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Abstract

Thin Plate Splines are often used in image reg-
istration to model deformations. Its physical anal-
ogy tnvolves a thin lying sheet of metal that is de-
formed and forced to pass through a set of control
points. The Thin Plate Spline equation minimizes
that thin plate bending energy. Rather than using
Euclidean distances between control points for im-
age deformation, we are using geodesic distances
for image segmentation. Control points become seed
points and force the thin plate to pass through given
heights. Intuitively, the thin plate surface in the
vicinity of a seed point within a region should have
stmilar heights. The minimally bended thin plate
actually gives a ”confidence” map telling what the
closest seed point is for every surface point. The
Thin Plate Spline has a closed-form solution which
is fast to compute and global optimal. This method
shows comparable results to the Graph Cuts method.

1 Introduction

Image segmentation is a crucial part when try-
ing to understand and analyze images. The main
goal is to localize different segments of an im-
age. Various methods exist and they are often
categorized into either intensity or contour based.
The latter category usually involves variational ap-
proaches ([1]), and solutions are typically limited
to local minima. Intensity based approaches can
however offer global minimum solutions. Among
these methods, the Graph Cut ([2, 3]) relies on
maxflow algorithms to find minimal cuts in an
image, and the Random Walker ([4]) solves the
Laplace’s equation (V2f = 0) to find unknown po-
tentials in an electrical circuit. The biharmonic
equation (A2f = 0) also has interesting smooth-
ing properties. A classifier as been developed in

[5] and used for image segmentation, its solution
approximates a inhomogeneous biharmonic equa-
tion with Dirichlet boundary conditions. The Thin
Plate Splines ([6]) solve the biharmonic equation to
find a minimally bended surface passing through
a set of control points. Although no application
has been used in image segmentation so far, it is
largely used to model image deformation. Other
deformation models exist but they are defined in
a local manner whereas the Thin Plate Splines are
motivated by an underlying physical explanation.
Many image registration techniques ([7]) rely on
such deformation. Image smoothing ([8]) is also
possible. In our method, we use geodesic dis-
tances in Thin Plate Splines for multi-label im-
age segmentation. The control points are used to
mark an image, and the minimally bended surface
height gives the segmentation labeling. First, Thin
Plate Splines are explained, followed by how the use
of geodesic distances permits image segmentation.
Results are later shown with a discussion compar-
ing this method with current state-of-the-art algo-
rithms.

2 Thin Plate Splines for Image Seg-
mentation

Finding the surface that bends the least while
passing through all the control points (Fig. 1) could
be done by minimizing its second order derivatives,
V2f =0 (or Af = 0). In the Thin Plate Splines,
the biharmonic equation, A?f = 0, is minimized,
and its fundamental solution is U(r) = r?logr in
2D. The Thin Plate Spline equation gives the sur-
face height f(x,y) for any point (z,y) and is defined
by
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Figure 1. A Thin Plate Spline passing
through 7 control points.

where || P; — (x, y)|| is the distance from the point
(x,y) to the ith control point, and a1, az, ay, w;’s
are the spline coefficients. The first three terms
correspond to the linear part, a plane fitting (in
a least square sense). The final summation term
corresponds to the bending forces exercised by the
N control points.

It can be shown [6] that f(x,y) is also a solution
to the biharmonic equation A% f = 0. The function
f(z,y) minimizes the bending energy defined by
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Coefficients [W | a1 ay ay] from Eq. 1 (here W =
[wy ws ... wy]) can all be found by solving the linear
equation

Y=[W|aa, ay]T L,

where Y is the surface elevation
at the given control points, Y =

[f(z1,91) f(z2,92) .. f(xn,yn)[000], and L
is the matrix specifying the relations among the

control points,
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with U;; = U(||P; — Pj||). Notice here that
matrix L is symmetric, and the Thin Plate Spline
equation can be efficiently solved with an LU de-
composition.

To summarize, the Thin Plate Spline defines a
surface that passes through given control points
while minimizing its bending energy. The figure
1 shows a Thin Plate Spline passing through seven
control points.

Figure 2. Geodesic distance map from a
pixel (white cross) to all other pixels.

2.1 Geodesic Thin Plate Splines

Thin Plate Splines are commonly used with
an Lo metric, i.e., distances are Euclidean ||P; —

(z,y)|]2 = ((xl — )2+ (y; — y)Q)%. We will rather
use geodesic distances based on an underlying im-
age. A weighted undirected graph G = (V&) is
constructed from an image, where each node corre-
sponds to a pixel
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where Q* is the shortest path in the graph be-
tween the nodes corresponding to the control point
P; and the point (z,y). The edge weight d(p, q) is
an arbitrary distance function between two neigh-
boring nodes. In our experiments, it is based on
the image intensity difference
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A long distance between two points means there
are large intensity variations (i.e., structure bound-
aries) along the shortest path between these two
points. The constant parameter o controls this
disparity penalization. Figure 2 shows an exam-
ple of such a distance map, pixel intensities give
the distance from the pixel to the seed point (i.e.,
dark means pixel is close to the seed point, brighter
means farther).

2.2 Segmentation

Interactive segmentation is performed by mark-
ing the image regions with seed points, each region
is associated with a certain label. We propose to
use these seed points as control points bending a
Thin Plate Spline. The spline surface covers the
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Figure 3. (a) an original image, (b) the Geodesic Thin Plate Spline with the seed points marking
the foreground/background (one seed point in the cameraman coat set at elevation 2, and four
others in each corner set at elevation 0), and (c) a segmentation separating all pixels above
and below elevation 1, and (d) a comparison with Graph Cuts.

whole image, and its elevation is governed by the
heights of the control points. Each region is asso-
ciated with a label, for instance, there is a control
point with elevation 1 in image region 1, a control
point with elevation 2 in image region 2, and so on.

The Thin Plate Spline elevation is still defined
by equation 1. The only difference is that now
the distances depend on intensity variations along
a shortest path. This causes the spline surface to
have similar elevation within the same image re-
gion. For instance, if a seed point in region 1 has
elevation 1, the spline surface covering the pixels in
this region would have an elevation close to 1, if a
seed point in region 2 has elevation 2, that region
would have elevations close to 2, and so on. Figure
3(b) shows an example of such surface elevations.
A Thin Plate Spline using geodesic distances tells
how close a pixel is to another seed point, e.g., a
pixel with elevation 1.2 is 0.2 apart from the seed
point at elevation 1, and 0.8 apart from the seed
point at elevation 2.

Segmentation is performed by finding iso-
contours separating seed points on the Thin Plate
Spline, e.g., all points below elevation 1.5 are con-
sidered part of region 1, and points above it are
considered part of region 2. Iso-values are the mid-
values between seed point elevations. Figure 3(c)
shows an example of a segmented region.

3 Results

The method has been applied on synthetic and
real images. The method shows promising results
and are comparable to the Graph Cuts method.
Seed points are placed manually in different re-
gions and they control a Geodesic Thin Plate

Spline. Geodesic distances from the seed points
are precomputed with region growths using prior-
ity queues, where only boundary pixels closest to
the seed points are grown first.

In the first experiment presented here (Fig. 3),
a foreground in a 256 x 256 is extracted from its
background. One seed point is in the cameraman
coat with elevation 2, and four others are in each
image corner with elevation 0 marking the back-
ground. The iso-value chosen for the segmentation
is 1. The segmentation process took 0.42 sec in a
2.40GHz Core 2 CPU. The same experiment with
the Graph Cuts algorithm failed because one cam-
era leg yielded a smaller cut.

In the second experiment (Fig. 4), a heart pic-
ture depicts an unclear boundary between the left
atrium (LA) and left ventricle (LV). One seed point
is placed in the LA with elevation 1, one seed point
in the LV with elevation 3, and five other points in
the background with elevation 0, one in each corner
and one in the myocardium (middle of the picture).
The iso-value chosen for the final segmentation is
2. The segmentation process took 0.25 sec.

4 Conclusion

This paper introduces a new method for image
segmentation. It brings a well known technique
widely used to model deformations to the problem
of image segmentation. It is to our knowledge the
first attempt of using Thin Plate Splines in image
segmentation.

The surface equation is defined in the continu-
ous domain, thus, compared to other state-of-the-
art algorithms such as the graph cuts, the method
has a sub-pixel accuracy. Furthermore, as opposed
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Figure 4. (a) a heart with an unclear boundary between the left atrium (LA) and left ventricle
(LV), (b) the Geodesic Thin Plate Spline with one seed point in the LA at elevation 1, one in the
LV at elevation 3, and five other seed points at elevation 0, (c) the LV is segmented by taking
all pixels whose elevation is above 2, and (d) a Graph Cuts comparison.

to the graph cuts where global optimum is guar-
anteed only for the binary case, our method can
handle multiple labels as long as there is an ordi-
nal structure. Recently, [9] proposes a new graph
construction to handle multi labels where each re-
gion/boundary is enclosed within each other.

Fast linear algebra is used to find a global op-
timal solution of the biharmonic equation. Simi-
larly to the Random Walker method, essentially an
LU decomposition is used to find the segmentation.
However, the number of unknowns is quite small in
our case. With K seeds, in our method, there are
K + 3 unknown coefficients (e.g., with 4 seed points
there are 7 unknowns (a1 5, and w;’s)), and in the
Random Walker, there are |I| — K unknowns (i.e.,
the potentials of the unseeded pixels).

In this paper we thus propose an alternative
to the current state-of-the-art segmentation algo-
rithm. The method also yields global optimal so-
lutions, is also fast, and also interactive (more lat-
itude would even be possible by relaxing control
points ([10]). Possible extensions also include the
use of polyharmonic splines for N-D applications
([7]). The results presented earlier already show
promising segmentations. There are still open ques-
tions, essentially how to handle multi labels in non
ordinal structures, what are the effects of a collaps-
ing surface (a possible cause yielding white dots in
Fig. 4(c)), what is the robustness to seed point lo-
cations, and how to generalize our formulation in a
Riemannian metric. Future work will also conduct
exhaustive comparisons with the Random Walker.
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