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Abstract. Recent progress in diffusion tensor imaging has lead to in-
vivo acquisitions of fiber orientation data in the beating heart. Current
methods are however limited in resolution to a few short-axis slices. For
this specific application and others where the diffusion volume is subsam-
pled, partial or even damaged, the reconstruction of a complete volume
can be challenging. To address this problem, we present two comple-
mentary methods for fiber reconstruction from sparse orientation mea-
surements, both of which derive from second-order properties related to
fiber curvature as described by Maurer-Cartan forms. The first is an
extrinsic partial volume reconstruction method based on principal com-
ponent analysis of the connection forms and is best put to use when
dealing with highly damaged or sparse data. The second is an intrinsic
method based on curvilinear interpolation of the Maurer-Cartan connec-
tion forms on ellipsoidal shells and is advantageous when more slice data
becomes available. Using a database of 8 cardiac rat diffusion tensor im-
ages we demonstrate that both methods are able to reconstruct complete
volumes to good accuracy and lead to lower reconstruction errors than
those given by current state of the art methods.

1 Introduction

Diffusion Tensor Imaging (DTI) of ex-vivo hearts has been studied extensively
across many species, including the human [1], dog [2], goat [3], rat [4] and the
pig [5]. These studies demonstrate salient and consistent local and global pat-
terns in mammalian cardiac fiber architecture. These patterns are supported by
histological measurements [1] and include [6] an inner to outer wall turning of
the cardiac fibers in a smooth and regular fashion undergoing a total change of
about 110◦, and the helical wrapping of fibers around the left ventricle. Such
patterns in the left ventricle of the heart relate to its biological function as an
efficient pump [7]. The study of cardiac fibers thus plays an important role in
characterising healthy cardiac function.

As higher resolutions are achieved in ex-vivo diffusion imaging, the contractile
nature of cardiac fibers remains to be fully explored. Recent advances in in-vivo
DTI have made it possible to measure fiber geometry at different times during a
beat cycle. However, current approaches are limited in their resolution, typically
providing a few short-axis slices only [8]. In order to generate a complete volume,
cardiac fiber directions need to be interpolated from these sparse measurements.
Moreover, even with the advent of higher spatial resolutions, (4D) temporal
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imaging could also benefit from a method that can reconstruct intermediate
geometry from sparse temporal samples.

Different methods exist for interpolating sparse orientation fields. In [9], a
binary mask of the left ventricle is mapped to a prolate spheroid and diffu-
sion tensors are interpolated in the curvilinear coordinates of the surface. Other
methods [10–12] carry out PCA on fiber fields and reconstruct fibers by project-
ing measurements onto the principal components. Diffusion tensors are positive
symmetric matrices ∈ R3×3 and their eigenvalues have meaningful physical prop-
erties, i.e. they measure water diffusion along three orthogonal directions. The
interpolation of diffusion tensors must therefore be done carefully in order to pro-
duce physically plausible results, for example using log-euclidean metrics [13].

It is well accepted that in the heart wall the first eigenvector of the diffusion
tensor correlates strongly with the underlying cardiac fiber direction [1], and
that it varies smoothly in the neighborhood of a voxel, but there is much greater
variability in the directions of the second and third eigenvectors. For these rea-
sons we choose to work directly with the first eigenvector of the diffusion tensor.
Motivated by recent work on the differential geometry of heart wall fibers [7],
a framework to estimate fiber curvatures was developed in [14] by considering
the rotation of a local frame field attached to the fiber direction, using the asso-
ciated Maurer-Cartan forms. In the present article we extend this approach to
reconstruct cardiac fibers from partial measurements.

The methods we develop are based on 1) principal component analysis (PCA)
and 2) on curvilinear interpolation of the differential structure of a cardiac frame
field which is defined from the first eigenvector of diffusion and from the heart
wall normal. By projecting a partial volume onto the differential PCA basis,
the differential structure of the frame field can be recovered even when the
acquired data is very sparse. For volumes sampled more densely, we also suggest
a curvilinear differential interpolation that performs significantly better than
the interpolation of the first eigenvector of diffusion. In Section 2 we describe
the natural cardiac coordinate system, the differential descriptors onto which
we perform PCA and interpolation, and the resulting reconstruction framework.
In Section 3 we compare our results with other reconstruction methods. We
conclude with a discussion of these results in Section 4.

2 Methods

In the following section we discuss the potential of differential geometric studies
of cardiac fibers based on the connection forms of [14]. This section proposes
two methods that employ this approach to interpolate the sparse diffusion data
that is typically found in-vivo cardiac diffusion imaging. In Section 2.2, the
connection forms are embedded into a partial PCA reconstruction framework. In
Section 2.3, an interpolation method based on the natural curvilinear coordinates
of the cardiac wall is developed on the connection forms. The experimental
results presented in this paper use the publicly available DT-MRI rat dataset
of [7]. Our computations require a common reference space in order to establish
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correspondences between hearts when comparing the reconstruction results and
in computing the PCA basis. An atlas is built using the methods described
in [15], and we work with the warped diffusion tensor fields.

2.1 Measuring Fiber Variation Via Connection Forms

In [14] a framework was introduced to analyze the second-order variability of
fiber directions from diffusion data. This framework allows measurements of
commonly used cardiac fiber metrics, including the helix and transverse angles,
but offers a richer description of the geometry of fiber bundles. This framework
requires the existence of a cardiac frame field defined at every voxel in the vol-
ume. The principal eigenvector of diffusion can be used to fully define a cardiac
orthonormal frame field, which we will refer to as F 1,F 2,F 3 ∈ R3. At a voxel
point x0, F 1 is taken as the fiber direction measured using dMRI, F 3 is the
orthogonal component to F 1 of the gradient B̂ of the shortest distance to epi-

cardium i.e. F 2 =
(
B̂ − (B̂ · F 1)F 1

)
/||B̂ − (B̂ · F 1)F 1|| and F 2 = F 3 × F 1.

The local frame
[
F 1 F 2 F 3

]
is then assembled, with the coordinate axes F 1 and

F 2 forming a local tangent plane to the heart wall.

Computing Connection Forms Given a cardiac orthonormal frame field
F 1,F 2,F 3 ∈ R3, the action of this frame on the cartesian frame e1, e2, e3 is
stored in the rotation matrix R where

[
F 1 F 2 F 3

]
= R

[
e1 e2 e3

]
. The differ-

ential geometry of the frame field is fully characterized by this transformation.
R can be used (see e.g. [16] for more details) to express the rate of change of
the frame field in an arbitrary direction v in terms of its own coordinate axes:∇vF 1

∇vF 2

∇vF 3

 = (dR)R−1

F 1

F 2

F 3

 = ω

F 1

F 2

F 3

, (1)

where ∇v is the differential operator, R−1 = RT , and ω = (dR)R−1 is a
skew symmetric matrix with 3 degrees of freedom formed by the one-forms ω12,
ω13, and ω23, called the Maurer-Cartan matrix of connection forms. In order
to characterize the change of the first principal direction of diffusion F 1 in the
direction of the other basis vectors F 2,F 3, we study the six contractions ωijk ≡
ωij〈F k〉, where i = 1, j ∈ (2, 3), and k ∈ (1, 2, 3). Each connection form can be
computed using

ω1jk =
[
Fj1 Fj2 Fj3

] ∂xF11 ∂yF11 ∂zF11

∂xF12 ∂yF12 ∂zF12

∂xF13 ∂yF13 ∂zF13

Fk1Fk2
Fk3

 , (2)

where frame vectors are expressed as F i = (Fi1, Fi2, Fi3) and partial derivatives
are computed using a first order central differentiation scheme. For notational
simplicity, we will sometimes label the connection forms ωp where p = 1, ..., 6,
enumerated as ω121, ω122, ω123, ω131, ω132, ω133. For the rat dataset of [7], we
obtain corresponding values of 0±0.04,0.01±0.05,−0.19±0.13,−0.03±0.03,0.01±
0.03,−0.01± 0.04, which is in accordance with values reported [7, 14,17].
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Fig. 1. Connection forms measure the variation of the frames F 1,F 2,F 3. Colors range
from −0.1 (blue) to 0.1 (red) for ω131, ω122, ω133 and −0.5 (blue) to 0.5 (red) for ω123.
ω123 and ω131 respectively measure outer to inner wall turning of fibers (the rate of
change of the helix angle) and ω131 measures the turning of fibers towards the inner
wall (the rate of change of the transverse angle).

Understanding Connection Forms The connection forms ωp have a distinc-
tive profile across different hearts. Fig. 1 shows the distribution of a selection
of connection forms for the average rat dataset and illustrates their action. The
connection form ω123 is particularly smooth across the population while the oth-
ers can be more disorganized due to the small scale behavior they represented
compared to the underlying DTI resolution and noise. Varying degrees of er-
rors are therefore expected in their reconstruction. Each ωp can be described as
follows.

1. The rotations of F 1 towards F 2, ω12k describe the manner in which fibers
rotate in the tangent plane of the heart. More precisely, ω121 describes ge-
ometrical curvature, ω122 describes splaying in the tangent plane, and ω123

describes turning from outer to inner wall. The rotation ω123 measures the
rate of change of a salient cardiac feature called the helix angle that has been
extensively studied in the cardiac literature.

2. The rotations of F 1 towards F 3, ω13k, express the turning of the fibers
away from the tangent plane. ω131 measures the local topological curvature
of the heart, ω132 describes the rate of change of the transverse angle, ω133

measures the fanning of the local fiber population away from the tangent
plane and towards the inner wall.

3. The rotations of F 2 towards F 3, ω23k are a measure of the variability of the
local tangent plane itself.
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2.2 PCA Reconstruction of Connection Forms

Following the standard approach to principal component analysis (PCA) and its
application to low-dimensional projections [18], we compute PCA on the field
of connection forms. The m training measurements ψpi ∈ Rn are represented
as vectorized matrices, where the subscript i runs over the n voxels contained
in the 3D volume, obtained for each ωp using (2). The mean measurement is
defined as x̄p = 1

m

∑
iψpi, and is subtracted from each data vector, xpi =

ψpi − x̄p, i = 1, ...,m to form the data matrix Xp = [xp1, ...,xpm] which
is analyzed via PCA. The principal components of each connection form are
the eigenvectors of the covariance matrix of Xp, Cp = 1

mXpX
T
p . Given the

large number of voxels contained in DT-MRI volumes, it is more efficient to
compute the eigenvectors of XT

pXp. The eigenvectors of Cp can then be found
as Cpwpi = λiwpi, where wpi ≡ Xvpi, and where vpi and λi are respectively

the eigenvectors and eigenvalues of XT
pXp.

Partial volumes can then be projected onto the basis (wpi, λi). Given a partial
volume ω̃p of connection forms which is a subset of the complete volume ωp via
a linear map ω̃p = Lωp, we want to obtain the partial projection weights γpi
onto the PCA eigenbasis that minimizes the following error:

Ep = ||(ω̃p − x̄p)−
∑
i

γpiwi||2 (3)

= ||ω̂p − Γ pW p||2 (4)

where ω̂p = ω̃p − x̄p and W p = [wp1, ...,wp,m−1]. The solution is found to be

Γ p = W+
p ω̂p, (5)

where W+
p denotes the pseudoinverse of W p and can be obtained using e.g.

singular value decomposition. This solution is optimal in the least-squares sense.
The resulting partial projection is then found to be

ωp = x̄p +W+
p (ω̃p − ω̄p)W p. (6)

Using (2) and (6), and denoting JF̃ 1
as the Jacobian of F̃ 1, the following ex-

pression is then obtained for projecting a partial cardiac frame measurement
F̃ 1, F̃ 2, F̃ 3 onto the eigenbasis W p of the connection form ω1jk:

ω1jk = x̄1jk +W+
1jk(F̃

T

j JF̃ 1
F̃ k − ω̄1jk)W 1jk. (7)

2.3 Reconstruction from Maurer-Cartan Interpolation

We now introduce the curvilinear radial basis function (RBF) interpolation
scheme. Corresponding points in the volume are enforced to lie on a thin shell
defined as isolevels of the distance transform to the cardiac outer wall. This
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is supported by observations in [14] that fibers are locally constrained in thin
ellipsoidal shells. The interpolation problem can be formulated as follows:

ωp(x) =
∑
xi∈ζ

φi(x,xi)ω̃p(xi), xi ∈ ζ ∩ Ω̃,x ∈ ζ ∩Ω, ∀ζ (8)

where ωp(x) is the connection form volume reconstructed at interpolation points

x from the partial measurements ω̃p, ζ is the thin shell domain, Ω̃ is the inter-
polation domain, xi are the interpolants contained in the partial measurement
domain Ω, and φ is a radial basis function. We use curvilinear interpolation such
that φ(x,xi) = |x−xi|. The interpolation is then carried out iteratively for each
thin shell ζ, using standard methods for solving the RBF weight matrix. See [19]
for more details.

3 Results

The temporal and dynamic nature of in-vivo imaging limits the resolution of the
DTI volume acquisition and typically only a few short-axis slices are available.
We simulate this effect by subsampling the diffusion volumes along the long-axis
at regular intervals, as shown in Fig. 2. By varying the number of interval slices,
we are able to measure the performance of each method in reconstructing partial
diffusion volumes. Equations (7) and (8) offer two complimentary approaches to
reconstruct a partial volume of cardiac fiber connection form measurements.
These methods are compared against the direct curvilinear interpolation of the
eigenvector F 1 and its PCA reconstruction, followed by connection form mea-
surements using (2). Fig. 2 shows an example of the reconstruction of a ω123

volume consisting of only five short-axis slices. Figure Fig. 3 shows a compari-
son of the four methods for increasing number of short-axis slices, with the full
volume consisting of 50 slices. The connection form interpolation consistently
yields lower errors and performs significantly better than both F 1- and PCA-
based approaches when the volume is more densely sampled. On the other hand,
although error curves are comparable for few slices, the interpolation cannot
capture the finer details that are better reconstructed by considering extrinsic
information content drawn from the population and stored in the PCA basis.
The PCA curves stabilize fast, indicating the projection soon converges to a par-
ticular weighting of the PCA eigenvectors. More training data in the PCA basis
would be required in order to make the reconstruction more subject-specific.

4 Conclusion

We proposed two complementary methods for reconstructing partial cardiac fiber
volumes using a framework based on the Maurer-Cartan connection forms of the
cardiac frame field. The first (extrinsic) method is a partial volume reconstruc-
tion using a PCA of connection forms. This method is more appropriate when
facing highly sparse and irregular data. One limitation of this approach is in
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(a) Original (b) F 1 interpolation (c) ω-interpolation (d) ω-PCA

Fig. 2. Reconstruction of the connection form ω123 for one specimen. From left to right:
original ω123 volume and axial subsamples (overlaid in gray), F 1 interpolation method,
connection form interpolation method, connection form PCA method. ω123 has average
magnitude 0.2376 and the total errors are respectively 0.1446, 0.1063, 0.1275.
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(b) ω122

10 20 30 40
10

15

20

25

30

35

40

45

50

55

Reconstruction (%)

R
e
c
o
n
s
c
tr

u
c
ti
o
n
 e

rr
o
r 

(%
)

 

 

Cartan Interpolation
Cartan PCA
Fiber Interpolation
Fiber PCA

(c) ω123

Fig. 3. Average reconstruction of the connection forms using different interpolation
schemes. Proposed methods are shown in red and blue. The reconstruction ratio is
defined as one minus the error divided by the mean connection form magnitude.

the number of sample points required in constructing the PCA basis. Given
the stability of the cardiac frame field across different subjects, collecting more
exemplar data would result in a PCA basis that captures a larger amount of
the variability found in the population and consequently provide a more robust
reconstruction. Another drawback of this method is that interpolants are not
reconstructed exactly due to the projection step of the PCA onto an orthogo-
nal basis. The second (intrinsic) method is the curvilinear interpolation of the
connection forms following the natural ellipsoidal geodesics of the cardiac wall.
This method yields lower errors as more reconstruction slices are available and
goes exactly through interpolants. This method also performs significantly bet-
ter than interpolation of the first eigenvector of diffusion. One drawback of using
RBF interpolation is that basis functions become less meaningful if interpolants
are spatially distant, which can happen with highly sparse diffusion volumes.
Moreover, salient small-scale patterns located in-between interpolants cannot be
reconstructed without a priori information. In that case the problem would be
better expressed via PCA reconstruction.

There are a number of directions for future investigation including the de-
velopment of partial differential equation solvers for reconstructing frame fields
from sparse and bounded connection form measurements, the use of connection
forms for temporal interpolation and superresolution of diffusion volumes, and
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for reconstructing irregularly sampled spatial regions, and the combination of
intrinsic and extrinsic data into a united PCA-interpolation framework.
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