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Abstract. Supervised learning is well-known to fail at generalization
under distribution shifts. In typical clinical settings, the source data is
inaccessible and the target distribution is represented with a handful of
samples: adaptation can only happen at test time on a few (or even a
single) subject(s). We investigate test-time single-subject adaptation for
segmentation, and propose a shape-guided entropy minimization objec-
tive for tackling this task. During inference for a single testing subject,
our loss is minimized with respect to the batch normalization’s scale and
bias parameters. We show the potential of integrating various shape pri-
ors to guide adaptation to plausible solutions, and validate our method
in two challenging scenarios: MRI-to-CT adaptation of cardiac segmen-
tation and cross-site adaptation of prostate segmentation. Our approach
exhibits substantially better performances than the existing test-time
adaptation methods. Even more surprisingly, it fares better than state-
of-the-art domain adaptation methods, although it forgoes training on
additional target data during adaptation. Our results question the useful-
ness of training on target data in segmentation adaptation, and points to
the substantial effect of shape priors on test-time inference. Our frame-
work can be readily used for integrating various priors and for adapt-
ing any segmentation network. The code is publicly available (https://
github.com/mathilde-b/TTA).
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1 Introduction

Deep neural networks have achieved state-of-the-art performances in various nat-
ural and medical-imaging problems [13]. However, they tend to under-perform
when the test-image distribution is different from those seen during training. In
medical imaging, this is due to, for instance, variations in imaging modalities and
protocols, vendors, machines, clinical sites and subject populations. For seman-
tic segmentation problems, labelling a large number of images for each different
target distribution is impractical, time-consuming, and often impossible. To cir-
cumvent those impediments, methods learning robust representations with less
supervision have triggered interest in medical imaging [5].
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This motivates Domain Adaptation (DA) methods: DA amounts to adapting
a model trained on an annotated source domain to another target domain, with
no or minimal new annotations for the latter. Popular strategies involve mini-
mizing the discrepancy between source and target distributions in the feature or
output spaces [18,19]; integrating a domain-specific module in the network [6];
translating images from one domain to the other [23]; or integrating a domain-
discriminator module and penalizing its success in the loss function [19].

In medical applications, separating the source training and adaptation is
critical for privacy and regulatory reasons, as the source and target data may
come from different clinical sites. Therefore, it is crucial to develop adaptation
methods, which neither assume access to the source data nor modify the pre-
training stage. Standard DA methods, such as [6,18,19,23], do not comply with
these restrictions. This has recently motivated Source-Free Domain Adaptation
(SFDA) [3,9], a setting where the source data (neither the images nor the ground-
truth masks) is unavailable during the training of the adaptation phase.

Evaluating SFDA methods consists in: (i) adapting on a dedicated training
set Tr from the target domain; and (ii) measuring the generalization performance
on an unseen test set Te in the target domain. However, emerging and recent
Test-Time Adaptation (TTA) works, both in learning and vision [4,17,21] as well
as in medical imaging [9,20], argue that this is not as useful as adapting directly
to the test set Te. In various applications, access to the target distribution might
not be possible. This is particularly common in medical image segmentation
when only a single target-domain subject is available for test-time inference.
In the context of image classification, the authors of [21] showed recently that
simple adaptation of batch normalization’s scale and bias parameters on a set
of test-time samples can deal competitively with domain shifts.

With this context in mind, we propose a simple formulation for source-free
and single-subject test-time adaptation of segmentation networks. During infer-
ence for a single testing subject, we optimize a loss integrating shape priors
and the entropy of predictions with respect to the batch normalization’s scale
and bias parameters. Unlike the standard SFDA setting, we perform test-time
adaptation on each subject separately, and forgo the use of target training set
Tr during adaptation. Our setting is most similar to the image classification
work in [21], which minimized a label-free entropy loss defined over test-time
samples. Building on this entropy loss, we further guide segmentation adapta-
tion with domain-invariant shape priors on the target regions, and show the
substantial effect of such shape priors on TTA performances. We report compre-
hensive experiments and comparisons with state-of-the-art TTA, SFDA and DA
methods, which show the effectiveness of our shape-guided entropy minimiza-
tion in two different adaptation scenarios: cross-modality cardiac segmentation
(from MRI to CT) and prostate segmentation in MRI across different sites. Our
method exhibits substantially better performances than the existing TTA meth-
ods. Surprisingly, it also fares better than various state-of-the-art SFDA and
DA methods, although it does not train on source and additional target data
during adaptation, but just performs joint inference and adaptation on a single
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Fig. 1. Overview of our framework for Test-Time Adaptation with Shape Moments:
we leverage entropy minimization and shape priors to adapt a segmentation network
on a single subject at test-time.

3D data point in the target domain. Our results and ablation studies question
the usefulness of training on target set Tr during adaptation and points to the
surprising and substantial effect of embedding shape priors during inference on
domain-shifted testing data. Our framework can be readily used for integrating
various priors and adapting any segmentation network at test times.

2 Method

We consider a set of M source images Im : Ωs ⊂ R
2 → R, m = 1, . . . , M ,

and denote their ground-truth K-class segmentation for each pixel i ∈ Ωs as a
K-simplex vector ym(i) =

(
y
(1)
m (i), . . . , y(K)

m (i)
)

∈ {0, 1}K . For each pixel i, its

coordinates in the 2D space are represented by the tuple
(
u(i), v(i)

) ∈ R
2.

Pre-training Phase. The network is first trained on the source domain only, by
minimizing the cross-entropy loss with respect to network parameters θ:

min
θ

1
|Ωs|

M∑
m=1

� (ym(i), sm(i, θ)) (1)

where sm(i, θ) = (s(1)m (i, θ), . . . , s(K)
m (i, θ)) ∈ [0, 1]K denotes the predicted soft-

max probability for class k ∈ {1, . . . , K}.

Shape Moments and Descriptors. Shape moments are well-known in classical
computer vision [15], and were recently shown useful in the different context of
supervised training [10]. Each moment is parametrized by its orders p, q ∈ N,
and each order represents a different characteristic of the shape. Denote In :
Ωt ⊂ R

2 → R, n = 1, . . . , N the 2D slices of a subject in the target domain. For
a given p, q ∈ N and class k, the shape moments of the segmentation prediction
of an image In can be computed as follows from the softmax matrix Sn(θ) =(
s(k)n (θ)

)
k=1...K

:

μp,q

(
s(k)n (θ)

)
=

∑
i∈Ω

s(k)n (i, θ)up
(i)v

q
(i)
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Central moments are derived from shape moments to guarantee translation
invariance. They are computed as follows:

μ̄p,q

(
s(k)n (θ)

)
=

∑
i∈Ω

sk
n(i, θ)

(
u(i) − ū(k)

)p (
v(i) − v̄(k)

)q

.

where
(

μ1,0(s
(k)
n (θ))

μ0,0(s
(k)
n (θ))

,
μ0,1(s

(k)
n (θ))

μ0,0(s
(k)
n (θ))

)
are the components of the centroid. We use the

vectorized form onwards, e.g. μp,q (sn(θ)) =
(
μp,q(s

(1)
n (θ)), . . . , μp,q(s

(K)
n (θ))

)�
.

Building from these definitions, we obtain 2D shape moments from the network
predictions. We then derive the shape descriptors R,C,D defined in Table 1,
which respectively inform on the size, position, and compactness of a shape.

Table 1. Examples of shape descriptors based on softmax predictions.

Shape Descriptor Definition

Class-Ratio R(s) := 1
|Ωt|µ0,0 (s)

Centroid C (s) :=
(

μ1,0(s)

μ0,0(s)
,

μ0,1(s)

μ0,0(s)

)

Distance to Centroid D (s) :=
(

2
√

μ̄2,0(s)

μ0,0(s)
, 2
√

μ̄0,2(s)

μ0,0(s)

)

Test-Time Adaptation and Inference with Shape-Prior Constraints. Given a sin-
gle new subject in the target domain composed of N 2D slices, In : Ωt ⊂ R

2 → R,
n = 1, . . . , N , the first loss term in our adaptation phase is derived from [21],
to encourage high confidence in the softmax predictions, by minimizing their
weighted Shannon entropy: �ent(sn(i, θ)) = −∑

k νksk
n(i, θ) log sk

n(i, θ), where
νk, k = 1 . . . K, are class weights added to mitigate imbalanced class-ratios.

Ideally, to guide adaptation, for each slice In, we would penalize the devia-
tions between the shape descriptors of the softmax predictions Sn(θ) and those
corresponding to the ground truth yn. As the ground-truth labels are unavail-
able, instead, we estimate the shape descriptors using the predictions from the
whole subject {Sn(θ), n = 1, . . . , N}, which we denote respectively C̄, D̄.

The first shape moment we leverage is the simplest: a zero-order class-ratio
R. Seeing these class ratios as distributions, we integrate a KL divergence with
the Shannon entropy:

LTTAS(θ) =
∑

n

1
|Ωn|

∑
i∈Ωt

�ent(sn(i, θ)) + KL(R(Sn(θ)), R̄). (2)

It is worth noting that, unlike [2], which used a loss of the form in Eq. (2) for
training on target data, here we use this term for inference on a test subject, as a
part of our overall shape-based objective. Additionally, we integrate the centroid



740 M. Bateson et al.

(M = C) and the distance to centroid (M = D) to further guide adaptation to
plausible solutions:

min
θ

LTTAS(θ)

s.t.
∣∣∣M(k)(Sn(θ)) − M̄(k)

∣∣∣ ≤ 0.1, k = {2, . . . , K}, n = {1, . . . , N}.
(3)

Imposing such hard constraints is typically handled through the minimiza-
tion of the Lagrangian dual in standard convex-optimization. As this is compu-
tationally intractable in deep networks, inequality constraints such as Eq. (3)
are typically relaxed to soft penalties [7,8,11]. Therefore, we experiment with
the integration of C and D through a quadratic penalty, leading to the following
unconstrained objectives for joint test-time adaptation and inference:

∑
n

1
|Ωt|

∑
i∈Ωn

�ent(sn(i, θ)) + KL(R(Sn(θ)), R̄) + λF(M(Sn(θ)), M̄), (4)

where F is a quadratic penalty function corresponding to the relaxation of
Eq. (3): F(m1,m2) = [m1 − 0.9m2]2+ + [1.1m2 − m1]2+ and [m]+ = max(0,m),
with λ denoting a weighting hyper-parameter. Following recent TTA methods
[9,21], we only optimize for the scale and bias parameters of batch normalization
layers while the rest of the network is frozen. Figure 1 shows the overview of the
proposed framework.

3 Experiments

3.1 Test-time Adaptation with Shape Descriptors

Heart Application. We employ the 2017 Multi-Modality Whole Heart Segmen-
tation (MMWHS) Challenge dataset for cardiac segmentation [24]. The dataset
consists of 20 MRI (source domain) and 20 CT volumes (target domain) of non-
overlapping subjects, with their manual annotations of four cardiac structures:
the Ascending Aorta (AA), the Left Atrium (LA), the Left Ventricle (LV) and
the Myocardium (MYO). We employ the pre-processed data provided by [6].
The scans were normalized as zero mean and unit variance, and data augmenta-
tion based on affine transformations was performed. For the domain adaptation
benchmark methods (DA and SFDA), we use the data split in [6]: 14 subjects
for training, 2 for validation, and 4 for testing. Each subject has N = 256 slices.

Prostate Application. We employ the dataset from the publicly available NCI-
ISBI 2013 Challenge1. It is composed of manually annotated T2-weighted MRI
from two different sites: 30 samples from Boston Medical Center (source domain),
and 30 samples from Radboud University Medical Center (target domain). For
the DA and SFDA benchmark methods, 19 scans were used for training, one

1 https://wiki.cancerimagingarchive.net.

https://wiki.cancerimagingarchive.net
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for validation, and 10 scans for testing. We used the pre-processed dataset from
[14], who resized each sample to 384 × 384 in axial plane, and normalized it to
zero mean and unit variance. We employed data augmentation based on affine
transformations on the source domain. Each subject has N ∈ [15, 24] slices.

Benchmark Methods. Our first model denoted TTASRC constrains the class-
ratio R and the centroid C using Eq. (4); similarly, TTASRD constrains R and
the distance-to-centroid D. We compare to two TTA methods: the method in [9],
denoted TTDAE, where an auxiliary branch is used to denoise segmentation,
and Tent [21], which is based on the following loss: minθ

∑
n

∑
i∈Ωn

�ent(sn(i, θ)).
Note that Tent corresponds to performing an ablation of both shape moments
terms in our loss. As an additional ablation study, TTASR is trained with the
class-ratio matching loss in Eq. (2) only. We also compared to two DA methods
based on class-ratio matching, CDA [1], and CurDA [22], and to the recent
source-free domain adaptation (SFDA) method AdaMI in [2]. A model trained
on the source only, NoAdap, was used as a lower bound. A model trained on the
target domain with the cross-entropy loss, Oracle, served as an upper bound.

Estimating the Shape Descriptors. For the estimation of the class-ratio
R̄, we employed the coarse estimation in [1], which is derived from anatomical
knowledge available in the clinical literature. For M ∈ {C,D}, we estimate the
target shape descriptor from the network prediction masks ŷn after each epoch:
M̄(k) = 1

|V k|
∑

v∈V k v, with V k =
{
M(k)(ŷn) if Rk(ŷn) > εk, n = 1 · · · N}

.
Note that, for a fair comparison, we used exactly the same class-ratio priors

and weak supervision employed in the benchmarks methods in [1,2,22]. Weak
supervision takes the form of simple image-level tags by setting R̄(k) = 0 and
λ = 0 for the target images that do not contain structure k.

Training and Implementation Details. For all methods, the segmentation
network employed was UNet [16]. A model trained on the source data with
Eq. (1) for 150 epochs was used as initialization. Then, for TTA models, adap-
tation is performed on each test subject independently, without target training.
Our model was initialized with Eq. (2) for 150 epochs, after which the additional
shape constraint was added using Eq. (4) for 200 epochs. As there is no learning
and validation set in the target domain, the hyper-parameters are set following
those in the source training, and are fixed across experiments: we trained with
the Adam optimizer [12], a batch size of min(N, 22), an initial learning rate of
5 × 10−4, a learning rate decay of 0.9 every 20 epochs, and a weight decay of
10−4. The weights νk are calculated as: νk = R̄−1

k∑
k R̄−1

k

. We set λ = 1 × 10−4.

Evaluation. The 3D Dice similarity coefficient (DSC) and the 3D Average
Surface distance (ASD) were used as evaluation metrics in our experiments.

3.2 Results and Discussion

Table 2 and Table 3 report quantitative metrics for the heart and prostate respec-
tively. Among DA methods, the source-free AdaMI achieves the best DSC
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Table 2. Test-time metrics on the cardiac dataset, for our method and various Domain
Adaptation (DA), Source Free Domain Adaptation (SFDA) and Test Time Adaptation
(TTA) methods.

Methods DA SFDA TTA
DSC (%) ASD (vox)

AA LA LV Myo Mean AA LA LV Myo Mean

NoAdap (lower b.) 49.8 62.0 21.1 22.1 38.8 19.8 13.0 13.3 12.4 14.6

Oracle (upper b.) 91.9 88.3 91.0 85.8 89.2 3.1 3.4 3.6 2.2 3.0

CurDA [22] � × × 79.0 77.9 64.4 61.3 70.7 6.5 7.6 7.2 9.1 7.6

CDA [1] � × × 77.3 72.8 73.7 61.9 71.4 4.1 6.3 6.6 6.6 5.9

AdaMI [2] × � × 83.1 78.2 74.5 66.8 75.7 5.6 4.2 5.7 6.9 5.6

TTDAE [9] × × � 59.8 26.4 32.3 44.4 40.7 15.1 11.7 13.6 11.3 12.9

Tent [21] × × � 55.4 33.4 63.0 41.1 48.2 18.0 8.7 8.1 10.1 11.2

Proposed Method

TTASRC (Ours) × × � 85.1 82.6 79.3 73.2 80.0 5.6 4.3 6.1 5.3 5.3

TTASRD (Ours) × × � 82.3 78.9 76.1 68.4 76.5 4.0 5.8 6.1 5.7 5.4

Ablation study

TTASR × × � 78.9 77.7 74.8 65.3 74.2 5.2 4.9 7.0 7.6 6.2

improvement over the lower baseline NoAdap, with a mean DSC of 75.7%
(cardiac) and 79.5% (prostate). Surprisingly though, in both applications, our
method TTASRD yields better scores: 76.5% DSC, 5.4 vox. ASD (cardiac) and
79.5% DSC, 3.9 vox. ASD (prostate); while TTASRC achieves the best DSC
across methods: 80.0% DSC and 5.3 vox. ASD (cardiac), 80.2% DSC and 3.79
ASD vox. (prostate). Finally, comparing to the TTA methods, both TTASRC

and TTASRD widely outperform TTADAE, which yields 40.7% DSC, 12.9 vox.
ASD (cardiac) and 73.2% DSC, 5.80 vox. ASD (prostate), and Tent, which

Table 3. Test-time metrics on the prostate dataset.

Methods DA SFDA TTA DSC (%) ASD (vox)

NoAdap (lower bound) 67.2 10.60

Oracle (upper bound) 88.9 1.88

CurDA [22] � × × 76.3 3.93

CDA [1] � × × 77.9 3.28

AdaMI [2] × � × 79.5 3.92

TTDAE [9] × × � 73.2 5.80

Tent [21] × × � 68.7 5.87

Proposed Method

TTASRC (Ours) × × � 80.2 3.79

TTASRD (Ours) × × � 79.5 3.90

Ablation study

TTASR (Ours) × × � 75.3 5.06
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reaches 48.2% DSC, 11.2 vox. ASD (cardiac) and 68.7% DSC, 5.87 vox. ASD
(prostate).

Qualitative segmentations are depicted in Fig. 2. These visuals results confirm
that without adaptation, a model trained only on source data cannot properly
segment the structures on the target images. The segmentation masks obtained
using the TTA formulations Tent [21], TTADAE [9] only show little improve-
ment. Both methods are unable to recover existing structures when the initial-
ization NoAdap fails to detect them (see fourth and fifth row, Fig. 2). On the
contrary, those produced from our degraded model TTASR show more regular
edges and is closer to the ground truth. However, the improvement over TTASR

obtained by our two models TTASRC, TTASRD is remarkable regarding the
shape and position of each structures: the prediction masks show better cen-
troid position (first row, Fig. 2, see LA and LV) and better compactness (third,
fourth, fifth row, Fig. 2).

Fig. 2. Qualitative performance on cardiac images (top) and prostate images (bottom):
examples of the segmentations achieved by our formulation (TTASRC, TTASRD), and
benchmark TTA models. The cardiac structures of MYO, LA, LV and AA are depicted
in blue, red, green and yellow respectively. (Color figure online)

4 Conclusion

In this paper, we proposed a simple formulation for single-subject test-time adap-
tation (TTA), which does not need access to the source data, nor the avail-
ability of a target training data. Our approach performs inference on a test
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subject by minimizing the entropy of predictions and a class-ratio prior over
batchnorm parameters. To further guide adaptation, we integrate shape priors
through penalty constraints. We validate our method on two challenging tasks,
the MRI-to-CT adaptation of cardiac segmentation and the cross-site adapta-
tion of prostate segmentation. Our formulation achieved better performances
than state-of-the-art TTA methods, with a 31.8% (resp. 7.0%) DSC improve-
ment on cardiac and prostate images respectively. Surprisingly, it also fares bet-
ter than various state-of-the-art DA and SFDA methods. These results highlight
the effectiveness of shape priors on test-time inference, and question the useful-
ness of training on target data in segmentation adaptation. Future work will
involve the introduction of higher-order shape moments, as well as the integra-
tion of multiple shapes moments in the adaptation loss. Our test-time adaptation
framework is straightforward to use with any segmentation network architecture.
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