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Abstract. Semi-supervised segmentation tackles the scarcity of annota-
tions by leveraging unlabeled data with a small amount of labeled data.
A prominent way to utilize the unlabeled data is by consistency training
which commonly uses a teacher-student network, where a teacher guides a
student segmentation. The predictions of unlabeled data are not reliable,
therefore, uncertainty-aware methods have been proposed to gradually
learn from meaningful and reliable predictions. Uncertainty estimation,
however, relies on multiple inferences from model predictions that need to
be computed for each training step, which is computationally expensive.
This work proposes a novel method to estimate the pixel-level uncertainty
by leveraging the labeling representation of segmentation masks. On the
one hand, a labeling representation is learnt to represent the available
segmentation masks. The learnt labeling representation is used to map
the prediction of the segmentation into a set of plausible masks. Such a
reconstructed segmentation mask aids in estimating the pixel-level uncer-
tainty guiding the segmentation network. The proposed method estimates
the uncertainty with a single inference from the labeling representation,
thereby reducing the total computation. We evaluate our method on the
3D segmentation of left atrium in MRI, and we show that our uncer-
tainty estimates from our labeling representation improve the segmenta-
tion accuracy over state-of-the-art methods. Code is released at GitHub.

Keywords: Semi-supervised learning · Segmentation · Labeling
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1 Introduction

Segmentation of organs or abnormal regions is a fundamental task in clinical appli-
cations, such as diagnosis, intervention and treatment planning. Deep learning
techniques are driving progress in automating the segmentation task under the
full-supervision paradigm [5,16]. Training these models, however, relies on a large
amount of pixel-level annotations, which require expensive clinical expertise [4].

Semi-supervised learning techniques alleviate the annotation scarcity by lever-
aging unlabeled datawith a small amount of labeled data. Current semi-supervised
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segmentation methods typically utilize the unlabeled data either in the form
of pseudo labels [1,32], regularization [6,17,19] or knowledge priors [8,31]. For
instance, self-training methods [1] generate pseudo labels from unlabeled data,
which are used to retrain the network iteratively. A wide range of regularization-
based methods has been explored for semi-supervised segmentation using adver-
sarial learning [3,17], consistency learning [2,12,14,30], or co-training [19,25,27].
Adversarial methods encourage the segmentation of unlabeled images to be closer
to those of the labeled images. In contrast, consistency and co-training methods
encourage two or more segmentation predictions, either from the same or different
networks, to be consistent under different perturbations of the input data. Such
consistency-based methods are popular in semi-supervision due to their simplic-
ity. Consequently, self-ensembling [9] and mean teacher-based [22] methods are
often used in semi-supervised segmentation of medical images [2,6,12]. However,
their generated predictions from the unlabeled images may not always be reliable.
To alleviate this issue, uncertainty-aware regularization methods [15,21,24,26,30]
are proposed to gradually add reliable target regions in predictions. This uncer-
tainty scheme is also employed in co-training [27] and self-training [32] approaches
to obtain reliable predictions. Although these methods performwell in low-labeled
data regimes, their high computation and complex training techniques might limit
their applicability to broader applications in practice. For instance, the uncer-
tainty estimation is approximated via Monte-Carlo Dropout [7] or an ensembling,
which requires multiple predictions per image. Co-training methods require two
or more networks to be trained simultaneously, whereas self-training-based meth-
ods rely on costly iterations. Lastly, adversarial training is challenging in terms of
convergence [20].

Prior-based methods in semi-supervised segmentation typically incorporate
anatomical knowledge of the target object during training themodel. For instance,
He et al. [8] encode the unlabeled images in an autoencoder and combine the learnt
features as prior knowledge in the segmentation networks. Recent attempts use
signed distance maps (SDM) as shape constraints during training [11,24,29]. For
instance, Le et al. [11] propose an additional task of predicting SDM and enforcing
consistency with an adversarial loss. Zheng et al. [31] exploit a probabilistic atlas
in their loss function. These knowledge-based methods require an additional task
to constraints shape prior, or it requires aligned images.

These limitations motivate our approach, which leverages a learnt labeling rep-
resentation to approximate the uncertainty. Our main idea is to mimic a shape
prior by learning a representation using segmentation masks such that each pre-
diction ismapped into a set of plausible segmentations. In contrast to [31], our app-
roach does not require aligned images. The mapped segmentation is subsequently
used to estimate the uncertainty maps to guide the segmentation network. We
hypothesize that the proposed uncertainty estimates are more robust than those
derived from the entropy variance, requiring multiple inferences strategy.

Our Contributions. We propose a novel way to estimate the pixel-wise uncer-
tainty to guide the training of a segmentation model. In particular, we integrate
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Fig. 1. Overview of our uncertainty estimation from labeling representation for semi-
supervised segmentation. A pre-trained labeling representation (DAE) is integrated
into the training of the mean teacher method, which maps the teacher predictions pt

into plausible segmentation p̂t. The uncertainty map (U) is subsequently estimated
with the teacher and DAE predictions, guiding the student model.

a pre-trained denoising autoencoder (DAE) into the training, whose goal is to
leverage a learnt labeling representation on unlabeled data. The DAE maps the
segmentation predictions into a set of plausible segmentation masks. Then, we
approximate the uncertainty by computing the pixel-wise difference between pre-
dicted segmentation and its DAE reconstruction. In contrast to commonly used
uncertainty-based approaches, our uncertainty map needs a single inference from
the DAE model, reducing computation complexity. Our method is extensively
evaluated on the 2018 Atrial Segmentation Challenge dataset [28]. The results
demonstrate the superiority of our approach over the state-of-the-art.

2 Method

The schematic of the proposed label representation-based uncertainty estimation
is shown in Fig. 1. The main idea is to exploit a labeling representation that maps
the predictions of the segmentation into set of plausible masks. The reconstructed
segmentations will be later employed to estimate an uncertainty map. Following
current literature [30], we adopt a mean teacher approach to train a segmentation
network. These steps are detailed next.

2.1 Mean Teacher Formulation

The standard semi-supervised learning consists of N labeled and M unlabeled
data in the training set, where N ! M . Let DL = {(xi, yi)}Ni=1 and DU =
{(xi)}(N+M)

N+1 denote the labeled and unlabeled sets, where an input volume is
represented as xi ∈ RH×W×D and its corresponding segmentation mask is yi ∈
{0, 1, ..., C}H×W×D, with C being the number of classes. We use the common
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mean teacher approach used in semi-supervised segmentation, which consists
of a student (S) and teacher (T ) model, both having the same segmentation
architecture. The overall objective function is defined as follows:

L = min
θs

N∑

i=1

Ls(f(xi; θs), yi) + λc

N+M∑

i=1

Lc(f(xi; θs, η), f(xi; θt; η′)),

where f(·) denotes the segmentation network, and θs and θt are the learnable
weights of the student and teacher models. The supervised loss Ls measures the
segmentation quality on the labeled data, whereas the consistency loss Lc mea-
sures the prediction consistency of student and teacher models for the same input
volume xi under different perturbations (η, η′). The balance between supervised
and unsupervised loss is controlled by a ramp-up weighting co-efficient λc. In
the mean teacher training, the student model parameters are optimized with
stochastic gradient descent (SGD), whereas exponential moving average (EMA)
is employed at each training step t, i.e., θt = αθt−1 + (1 − α)θs to update the
teacher model parameters. Note that α is the smoothing coefficient of EMA that
controls the update rate.

2.2 Labeling Representation Prior

Incorporating object shape prior in deep segmentation models is not obvious.
One of the reasons is that, in order to integrate such prior knowledge during
training, one needs to augment the learning objective with a differentiable term,
which in the case of complex shapes is not trivial. To circumvent these difficul-
ties, a simpler solution is to resort to an autoencoder trained with pixel-wise
labels, which can represent anatomical priors and be used as a global regularizer
during training. This strategy has been adopted for fully supervised training in
[18] and as a post-processing step in [10] to correct the segmentation predictions.
Motivated by this, we represent the available labels in a non-linear latent space
using a denoising autoencoder (DAE) [23], which somehow mimics a shape prior.
The DAE model consists of an encoder fe(·) and a decoder module fd(·) with a
d-dimensional latent space as shown in the Fig. 1. The DAE is trained to recon-
struct the clean labels yi from its corrupted version ỹi, which can be achieved
with a mean squared error loss: 1

H×W×D

∑
v ||fd(fe(ỹi,v)) − yi,v||2.

2.3 Uncertainty from a Labeling Representation

The role of the uncertainty is to gradually update the student model with reliable
target regions from the teacher predictions. Our proposed method estimates the
uncertainty directly from the labeling representation network fd(fe(·)), requiring
only one inference step. First, we map the prediction from the teacher model pti
with a DAE model to produce a plausible segmentation p̂ti. We subsequently esti-
mate the uncertainty as the pixel-wise difference between the DAE output and the
prediction, i.e., Ui = ||p̂ti − pti||2. Then, the reliable target for the consistency loss
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is obtained as e−γUi , similarly to [15], where γ is an uncertainty weighting factor
empirically set to 1. Finally, our consistency loss is defined as:

Lc(psi , p
t
i) =

∑
v e

−γUi,v ||psi,v − pti,v||2∑
v e

−γUi,v

where v is a voxel. We jointly optimize the consistency loss Lc and supervised
loss Ls as learning objectives, where Ls uses the cross-entropy and dice losses.

3 Results

Our proposed method is compared with the state-of-the-art semi-supervised seg-
mentation methods [11,14,15,30]. We group the uncertainty-based methods to
assess the effectiveness of our uncertainty estimation for segmentation. For a fair
comparison, all experiments are run three times with a fixed set of seeds on the
same machines, and their average results are reported.

Dataset andEvaluationMetrics. Ourmethod is evaluated on the Left Atrium
(LA) dataset from the 2018 Atrial Segmentation Challenge [28]. The dataset con-
sists of 100 3D MR volumes of LA with an isotropic resolution of 0.625mm3 and
corresponding segmentation masks. In our experiments, we use a 80/20 train-
ing/testing split and apply the same preprocessing as in [11,14,30]. The training
set is partitioned into N/M labeled/unlabeled splits, fixed across all methods for
each setting.We employDice Score Coefficient (DSC) and 95%HausdorffDistance
(HD) metrics to assess quantitative segmentation performance.

Implementation and Training details. Following [11,14,30], we use V-net
[16] as backbone architecture for teacher, student and DAE models. The skip
connections are removed, and a dense layer is added at the bottleneck layer for
the DAE model. The student model is trained by a SGD optimizer with an
initial learning rate (lr) of 0.1 and momentum 0.9 for 6000 iterations with a
cosine annealing [13] decaying. The teacher weights are updated by an EMA
with an update rate of α = 0.99 as in [22]. The consistency weight is updated
with Gaussian warming up function λc = β ∗ e−5(1−t/tmax)

2
, where t and tmax

denotes current and maximum training iterations, and β is set to 0.1, as in [30].
The DAE model is also trained with SGD with lr = 0.1, momentum of 0.9 and
decaying the lr by 2 for every 5000 iterations. Input to both segmentation and
DAE networks are random cropped to 112 × 112 × 80 size and employ online
standard data augmentation techniques such as random flipping and rotation. In
addition, input labels to the DAE model are corrupted with a random swapping
of pixels around class boundaries, morphological operations (erosion and dila-
tion), resizing and adding/removing shapes. The batch size is set to 4 in both
networks. Input batch for segmentation network uses two labeled and unlabeled
data. For testing, generating segmentation predictions uses the sliding window
strategy, and the method is evaluated at the last iteration as in [30]. Our exper-
iments were run on an NVIDIA RTX A6000 GPU with PyTorch 1.8.0.
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Table 1. Segmentation results on the LA test set for 10% labeled data experiments
averaged over three runs. Uncertainty methods with K inferences are grouped at the
bottom, while K = –, indicates non-uncertainty methods.

Methods #K N/M DSC (%) HD (mm)

Upper bound – 80/0 91.23 ± 0.44 6.08 ± 1.84

Lower bound – 8/0 76.07 ± 5.02 28.75 ± 0.72

MT [22] – 8/72 78.22 ± 6.89 16.74 ± 4.80

SASSnet [11] – 8/72 83.70 ± 1.48 16.90 ± 1.35

DCT [14] – 8/72 83.10 ± 0.26 12.62 ± 1.44

UAMT [30] 8 8/72 85.09 ± 1.42 18.34 ± 2.80

URPC [15] 1 8/72 84.47 ± 0.31 17.11 ± 0.60

Ours 1 8/72 86.58 ± 1.03 11.82 ± 1.42

Comparison with the State-of-the-Art. We now compare our method
with relevant semi-supervised segmentation approaches under the 10% and 20%
labeled data settings and report their results in Tables 1 and 2. Non-uncertainty-
based method such as MT [22], DCT [14], and SASSnet [11] are grouped in the
middle of the table, while uncertainty-based methods UAMT [30], URPC [15]1
and our methods are grouped at the bottom of each table. The upper and lower
bound from the backbone architecture V-net [16] are reported in the top.

In the first setting, 10% of labeled data is used, and the remaining images are
used as unlabeled data. From Table 1, we can observe that leveraging unlabeled
data improves the lower bound in all baselines. The uncertainty-based baselines
seem to improve the segmentation performance by 1% in Dice score compared
to non-uncertainty-based baselines. However, their performance drops in terms
of HD up to 5mm. Among baseline methods, UAMT and DCT achieve the
best Dice and HD scores, respectively. Compared to these best performing base-
lines, our method brings 1.5% and 0.8mm improvements in Dice and HD scores.
Moreover, uncertainty estimation in our method requires a single inference from
a labeling representation, whereas UAMT uses K = 8 inferences per training
step to obtain an uncertainty map.

Furthermore, we also validate our method on the 20% of labeled data sce-
nario, whose results are reported in Tables 2. Results demonstrate a similar trend
as compared to the 10% experiments. The uncertainty-based baselines improve
1% in terms of Dice and drop up to 1mm in HD, compared to non-uncertainty-
based methods. Our method improves the best performing baseline in both Dice
and HD scores. Particularly, our method improves the HD score by 2.5mm com-
pared to the best performing baseline (SASSnet).

Visual results of different segmentation results are depicted in Fig. 2. In the
top row of the figure, the segmentation of SASSnet produces holes in segmenta-
tion, and their method employs a post-processing tool to improve the segmenta-

1 Note that URPC [15] use multi-scale 3D U-Net [5] architecture.
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Table 2. Segmentation results on the LA test set for 20% labeled data experiments
averaged over three runs. Uncertainty methods with K inferences are grouped at the
bottom, while K = –, indicates non-uncertainty methods.

Methods #K N/M DSC (%) HD (mm)

Upper bound – 80/0 91.23 ± 0.44 6.08 ± 1.84

Lower bound – 16/0 81.46 ± 2.96 23.61 ± 4.94

MT [22] – 16/64 86.06 ± 0.81 11.63 ± 3.4

SASSnet [11] – 16/64 87.81 ± 1.45 10.18 ± 0.55

DCT [14] – 16/64 87.35 ± 1.26 10.25 ± 2.49

UAMT [30] 8 16/64 87.78 ± 1.03 11.1 ± 1.91

URPC [15] 1 16/64 88.58 ± 0.10 13.1 ± 0.60

Ours 1 16/64 88.60 ± 0.82 7.61 ± 0.78

Fig. 2. Qualitative comparison under 10% and 20% annotation setting. DSC
(%) and HD (mm) scores are mentioned at the top of each image. Coloring is the
prediction (Red) and ground truth (Blue). (Color figure online)

tion, which is avoided for a fair comparison. DTC captures the challenging top
right side region in segmentation; however, the prediction is under-segmented
and noisy. The uncertainty-based methods improve the segmentation in UAMT
and produce smooth segmentation boundaries in URPC. Our method improves
the segmentation region further compared to URPC. In the case of 20% labeled
data experiments, all methods improve the segmentation due to having access
to more labels during training, while the boundary regions are either under or
over-segmented. Our method produces better and smoother segmentation, which
can be due to the knowledge derived from the labeling representation.

Ablation Study. To validate the effectiveness of our uncertainty estimation on
segmentation performance, two experiments are conducted by adopting thresh-
old strategy and entropy scheme from UAMT. Particularly, a threshold strategy
is used in consistency, whereas entropy is used to estimate the uncertainty, and
their results are reported in Table 3. Compared to UAMT, our threshold and
entropy experiments significantly improve the segmentation performance in HD
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and Dice scores, while our proposed method (L2-based exponential uncertainty)
achieves the best performance. These results show the merit of our labeling rep-
resentation for uncertainty estimation. Furthermore, we report the ablation on
uncertainty weight γ and consistency weight β, in Table 4. Results demonstrate
that γ =1 is best for our method, while for β =1 our method further improves
Dice and HD scores; however, we report on β =0.1 in all experiments for a fair
comparison. Overall, for most of the γ and β values, our method is consistently
better than UAMT baselines, demonstrating the robustness of our approach.

Table 3. Effectiveness of our proposed uncertainty estimation on segmentation results
using different strategies.

Methods N/M DSC (%) HD (mm)

UAMT [30] 8/72 85.09 ± 1.42 18.34 ± 2.80

Ours (threshold) 8/72 85.39 ± 0.91 12.96 ± 3.05

Ours (entropy) 8/72 85.92 ± 1.52 11.16 ± 0.82

Ours 8/72 86.58 ± 1.03 11.82 ± 1.42

Table 4. Evaluating the γ and β values under 10% annotation setting.

γ, β = 0.1 DSC (%) HD (mm) β, γ = 1 DSC (%) HD (mm)

0.1 85.30 ± 1.17 13.51 ± 2.66 0.01 84.89 ± 0.92 11.84 ± 2.79

0.5 85.28 ± 0.60 14.01 ± 4.44 0.05 85.88 ± 1.44 10.98 ± 1.85

1 86.58 ± 1.03 11.82 ± 1.42 0.1 86.58 ± 1.03 11.82 ± 1.42

2 85.84 ± 1.39 12.13 ± 3.43 0.5 86.54 ± 0.74 12.42 ± 1.31

5 84.87 ± 0.85 15.28 ± 1.76 1 86.89 ± 0.6 9.85 ± 0.82

4 Conclusion

We presented a novel labeling representation-based uncertainty estimation for
the semi-supervised segmentation. Our method produces an uncertainty map
from a labeling representation network, which guides the reliable regions of pre-
diction for the segmentation network, thereby achieving better segmentation
results. Results demonstrate that the proposed method achieves the best perfor-
mance compared to state-of-the-art baselines on left atrium segmentation from
3D MR volumes in two different settings. The ablation studies demonstrate
the effectiveness and robustness of our uncertainty estimation compared to the
entropy-based method. Our proposed uncertainty estimation from the labeling
representation approach can be adapted to a broader range of applications where
it is crucial to obtain a reliable prediction.
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