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Abstract. A novel dynamic (4D) PET to PET image registration pro-
cedure is proposed and applied to multiple PET scans acquired with the
high resolution research tomograph (HRRT), the highest resolution hu-
man brain PET scanner available in the world. By extending the recent
diffeomorphic log-demons (DLD) method and applying it to multiple dy-
namic [11C]raclopride scans from the HRRT, an important step towards
construction of a PET atlas of unprecedented quality for [11C]raclopride
imaging of the human brain has been achieved. Accounting for the tem-
poral dimension in PET data improves registration accuracy when com-
pared to registration of 3D to 3D time-averaged PET images. The DLD
approach was chosen for its ease in providing both an intensity and shape
template, through iterative sequential pair-wise registrations with fast
convergence. The proposed method is applicable to any PET radiotracer,
providing 4D atlases with useful applications in high accuracy PET data
simulations and automated PET image analysis.

1 Introduction

Medical image registration methods are necessary in a variety of clinical and
research studies, whether it be aligning data between different subjects acquired
with the same imaging modality (multi-subject single modality), or aligning
data obtained from different modalities for the same subject (multi-modality
single subject). The latter case is the most frequently used when dual-modality
imaging is not available (e.g. to identify anatomical regions in PET images),
and the challenge is to relate functional and structural images, e.g., PET to
CT or PET to MR, as described in [6]. Such multi-modal registration is often
limited to different images of the same subject. In the brain therefore, a rigid
transformation can often be used, particularly when the acquisitions are close
in time. However, the case of inter-subject single-modality registration requires
more complex non-rigid methods to be deployed. Among these, Collins et al [3]
develop a method for MR brain data that is now part of the MINC software
suite. The Hammer algorithm [11] and the LDDMM framework [2] are also very
popular for 3D to 3D non-rigid registration.

The problem of inter-subject PET to PET registration, however, is relatively
unexplored in the medical imaging community. As an early example, the ap-
proach by Alpert et al. [1] and Eberl et al. uses only 6 parameters and cannot
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capture the necessary non-rigid deformations. In fact, there are no reported reg-
istration methods thus far which take into account the fact that PET data is
intrinsically four dimensional and that much information is contained in the
temporal dynamics of the tracer concentration. The currently used method for
PET to PET registration is to use the sum of all frames of the scan as a single
3D image and then to apply a chosen 3D to 3D registration algorithm.

In this article we propose a fast algorithm for (4D) PET to PET inter-
subject registration that uses information from the temporal behavior of the
tracer to provide a diffeomorphic warping transformation between two datasets.
We apply the algorithm to build a PET atlas of the human brain using a data
set of 15 [11C]raclopride scans. The temporal behavior is regularized by tracer
kinetic modeling to effectively reduce the dimensionality of the time course data.
The algorithm is a natural extension of the DLD algorithm [12] which offers the
advantage of being computationally efficient while sharing the potential for atlas
building with other elegant mathematical frameworks such as LDDMM [2].

The applications of 4D PET radiotracer-specific atlases include their use as
realistic ground truth radioactivity distributions in Monte Carlo PET simula-
tions and furthermore they provide scope for far easier fully automated kinetic-
modeling of PET data, where it is necessary to identify key functional regions
in the brain. A high quality atlas can first be carefully registered to an MR tem-
plate, as a one off procedure, and then with relative ease a unique subject PET
scan can be registered to the PET atlas for the matching radiotracer. A further
application is to exploit radiotracer-specific atlases as spatiotemporal priors in
both 3D and fully 4D image reconstruction, including the case of direct para-
metric image reconstruction requiring automated reference region identification,
which could be again facilitated by a high quality PET atlas.

In the following section we present the extension of the DLD algorithm for
PET to PET registration. We then evaluate the method in Section 3 and demon-
strate its potential for building a PET atlas. We end with a discussion of this
approach and its potential applications in Section 4.

2 Methods

In this section we review the 3D DLD algorithm, and then propose a new simi-
larity measure for dynamic PET images, from which we develop an extension of
DLD to dynamic (4D) PET images so that 4D PET atlases can be obtained.

2.1 3D Diffeomorphic Log-Demons registration

The DLD registration method was proposed by Vercauteren et al. [12] for 2D
or 3D image registration. It uses the Lie group structure over diffeomorphisms
for composition to obtain a diffeomorphic transformation by carrying out its
computations in the log domain. The objective function to minimize is
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where p stands for position, F is the fixed image, M the moving image, c the
current non-regularized transformation, and s the transformation, which is a
regularized version of c. The first term is the similarity between the warped and
the target image. The last term is the regularization term. The middle term is
the distance between the regularized and the non-regularized transformation. By
a first order approximation of E, the update u to the transformation is

u(p) = −
F (p)−M ◦ s(p)

||Jp||2 +
σ2
i

σ2
x

JpT . (2)

More details about this method can be found in [12].

2.2 TAC based similarity measure

A purely intensity based similarity measure is not appropriate for PET images,
because they are sensitive to the exact dose of radiotracer injected. Therefore,
we propose a new similarity measure for dynamic PET images that is based on
the values of interest to researchers. We use the simplified reference tissue model
(SRTM) proposed in [7], which is widely used by the PET community for binding
potential computation. This approach models the circulation and binding of the
injected radioligand in the brain. The time activity curve C (TAC) at each
voxel is then represented by three voxel specific parameters θ1, θ2 and θ3 and
a spatially invariant reference TAC CR, where the latter is estimated from a
reference region in the image. For the case of [11C]Raclopride, the cerebellum is
used. The relation between the parameters is as follows:

C(p, t) = θ1(p)CR(t) + θ2(p)CR(t) ∗ e
−θ3(p)t (3)

The least squares fitting of the model to the data is done by discretizing the
search space for θ3 and employing standard optimization techniques for θ1 and
θ2, according to the basis function method proposed by Gunn et al [5].

We propose to represent every image using the parameters θ1, θ2 and θ3,
because they summarize all the relevant biological information. Therefore, an
estimation of the parameters is done prior to the registration step using a CR

estimated from the image, and a standardized CR is used for all the subjects
to compute the similarity measure. The data are normalized in this fashion for
inter-subject intensity variations and dose injection difference, while retaining
biologically relevant and spatially varying information. Our new similarity mea-
sure can be expressed as

SimCR
(F,M) = SimCR

(θF1 , θ
F
2 , θ

F
3 , θ

M
1 , θM2 , θM3 )

=
∑

t=1...N

∑

p

(CF (p, t)− CM (p, t))2 (4)

where C is expressed for each image using Eq. 3. A standardized CR for the
similarity measure can be obtained as an average of the reference TACs of several
real scans.
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2.3 Multi-frame Diffeomorphic Log-Demons registration

Similarly to the multichannel method [9], our extended method uses information
from all individual frames. We extend the 3D DLD algorithm to 4D images with
the assumption that all frames for a given subject are fully motion corrected.
The transformation obtained is still 3D and must be applied to every frame of
the image. The objective function from Eq. (1) is modified to

E(F,M, s, c) =
1

σ2
i

SimCR
(F,M) +

1

σ2
x

Dist(s, c)2 +
1

σ2
T

Reg(s). (5)

By setting derivatives with respect to u of the first two terms of E to zero, and
following a similar process as in [12], it can be shown that the update u becomes:
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The update computation requires a matrix of size 3×3 to be inverted at each
voxel, with a computational cost that is acceptable. All computations are done
in the log domain. Therefore, the warping transformation is guaranteed to be
diffeomorphic. Moreover, as in the 3D method, the inverse transformation can
be obtained at negligible computational cost by inverting the stationary velocity
field. In our implementation, we use a multi-resolution approach.

2.4 Building a PET atlas

A method proposed by Guimond et al [4] and widely used in atlas building
is used along with our 4D DLD registration method to build a PET atlas. By
iterating from an arbitrary initial reference image, this image is updated to move
towards the barycentre of all images in the dataset. The term barycentre is to
be understood as the Frechet barycentre of the warpings from each image to the
reference. The Frechet mean can simply be expressed as the usual mean of the
stationary velocity fields obtained from the Demons algorithm, as is done in [8].
The new reference image can be expressed as

R′ = [
1

N

∑

i=1...N

Ii ◦ exp(vi)] ◦ exp(−
1

N

∑

i=1...N

vi) (7)

where vi is the stationary velocity field of the warping from Ii to the current
reference.

3 Results

The data used to test the registration algorithm and build the template are one
hour [11C]Raclopride scans acquired on a Siemens High Resolution Research
Tomograph (HRRT). All subjects were healthy volunteers. The size of each 4D
image is 256×256×207×26, and each voxel is 1.21×1.21×1.21mm3. More details
related to the acquisition and processing of the data can be found in [10].
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3.1 Pairwise PET registration

We have compared our multi-frame extended demons algorithm to the classical
3D demons algorithm and to the minctracc software developed based on [3], both
applied on PET scans summed in time to yield 3D images. We compared the
different methods in terms of intensity differences between corresponding voxel
locations in pair-wise registrations.

Comparison of minctracc and multi-frame demons The minctracc soft-
ware based on [3] provides a fully automated registration method. We used
cross-correlation as the objective function (which in practice gave the best re-
sults in terms of minimizing voxel-wise differences in intensity). We note that
this algorithm is not designed to be diffeomorphic and that it is primarily used
for MR, so it is not a priori suited for PET. Our intention is to get a sense of
how well an off-the-shelf 3D to 3D registration algorithm could work. We com-
pared this method with the proposed approach on 5 subjects, i.e., on 20 pairs.
Table 1 shows that the multi-frame demons method results in a lower percent-
age difference of intensity between the warped and the target image than the
minctracc software, although it is highly important to note that even if a perfect
registration were even possible, a large percentage difference between intensities
would still be obtained due to variations in the unique radiotracer dose deliv-
ered to each subject as well as the unique physiology of each subject. There is
an average decrease of intensity difference of 15 to 50 percentage points achieved
by the proposed method compared to minctracc. This improvement can be at-
tributed in part to the lack of explicit consideration of the temporal dimension
in minctracc.

Comparison of 3D and multi-frame demons We now compare the 3D and
extended demons registration approaches on a dataset of 10 subjects (a total of
10×9=90 pairs) using the same regularization parameters for both methods. This
gives us an indication of the potential improvement possible by incorporating
the fourth (temporal) dimension in the registration process.

Table 2 shows the average percentage difference in intensity of the voxel
values between the target and the warped image for 5 selected subjects from

Table 1. Average percentage difference in intensity between voxels at corresponding
locations in the target and the warped image for 5 subjects. Each box is for one pair
of subjects and there are 20 pairs in total.

Multi-frames demons (%) Minctracc software (%)
- 64.6 58.4 52.4 65.4 - 86.3 86.9 105.5 108.7

45.8 - 44.4 43.9 39.8 65.7 - 59.8 71.6 80.4
43.3 45.0 - 43.5 41.1 73.1 66.9 - 86.9 95.5
45.9 53.3 51.7 - 54.4 83.2 79.2 82.1 - 90.8
46.9 40.8 39.3 44.8 - 67.0 103.0 69.7 71.2 -
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Table 2. Average percentage difference in intensity between voxels at corresponding
locations in the target and the warped image for 5 subjects. 20 pairs are shown in the
table and there are 90 pairs in total.

Multi-frames demons (%) 3D demons (%)
- 64.6 58.4 52.4 65.4 - 75.5 71.0 59.7 76.2

45.8 - 44.4 43.9 39.8 49.4 - 49.4 47.9 46.5
43.3 45.0 - 43.5 41.1 47.7 51.3 - 48.0 44.8
45.9 53.3 51.7 - 54.4 50.7 65.4 62.1 - 63.4
46.9 40.8 39.3 44.8 - 50.4 47.3 43.9 48.6 -

the dataset. Over the whole dataset, a reduction of 3 to 12 percentage points
is achieved by the proposed multi-frame method. Fig. 1 shows an example of
registration were the multi-frame method is able to better recover structures of
the target image than the 3D version.

We have observed that the magnitude of the determinant of the Jacobian
of the transformation is smaller for the 3D DLD method, suggesting that it
gets more easily trapped in a local minimum. The multi-frame method uses
more information, which likely yields an objective function with fewer minima,
allowing for larger deformations with a reduction in voxel intensity differences.

3.2 A template for PET

The 4D template was built from 15 [11C]raclopride scans. Only three iterations
of the algorithm were used because convergence was fast. Fig. 2 shows different
frames and slices of the template. The blood vessels are clearly visible in the early
frames, followed by the grey matter, the caudate and putamen. In the following
frames, as expected, the radioactive concentration in the grey matter decreases
quickly, while the radiotracer binds to the D2/D3 receptors of the caudate and
putamen. The comparison with the single subject shown in Fig. 3 demonstrates
how the template is far less noisy and has sharper edges.

Target image Source image 3D DLD Multi-frame
- Target image - Target image

Fig. 1. Example of a registration. From left to right: target image, source image, abso-
lute value of the difference of intensity between 3D DLD registration and target image,
absolute value of the difference of intensity between multi-frame registration and target
image. The red arrow shows a grey matter structure that the multi-frame registration
recovers better than the 3D DLD registration.
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Fig. 2. Coronal, sagital and transverse maximum intensity projections of the 4D
[11C]Raclopride atlas. First Row: frame 3 in the temporal sequence. Second Row: frame
12 in the temporal sequence. Third Row: frame 22 in the temporal sequence.

4 Discussion

We have developed a new method for inter-subject dynamic (4D) PET image
registration, based on an extension of the recent DLD method. Our method
outperforms two 3D registration methods we have compared it against in terms
of intensity difference. It also appears to be more resistant to local minima. By
applying it initially to 15 dynamic [11C]raclopride scans from the HRRT, which
is the highest resolution human brain PET scanner available in the world, we
have taken an important step towards constructing a PET atlas of unprecedented
quality for [11C]raclopride imaging of the human brain. The DLD approach was
chosen for its ease in providing both an intensity and shape-based template. The
proposed method is in principle applicable to any PET radiotracer, providing 4D
atlases which will find useful application in high accuracy PET data Monte Carlo
simulations as well as for automated PET image analysis. Furthermore, when
used with appropriate care, such atlases could provide spatiotemporal priors for
3D and fully 4D PET image reconstruction.
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Fig. 3. Coronal, sagital and tranverse maximum intensity projections of a single
[11C]Raclopride subject, frame 12 in the temporal sequence. This is included for visual
comparison with the template in Fig. 2.
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