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Abstract

Finite element methods (FEM) are popular approaches for simulation of soft tissues with elastic or viscoelastic behavior.
However, their usage in real-time applications, such as in virtual reality surgical training, is limited by computational
cost. In this application scenario, which typically involves transportable simulators, the computing hardware severely
constrains the size or the level of details of the simulated scene. To address this limitation, data-driven approaches have
been suggested to simulate mechanical deformations by learning the mapping rules from FEM generated datasets. Prior
data-driven approaches have ignored the physical laws of the underlying engineering problem and have consequently
been restricted to simulation cases of simple hyperelastic materials where the temporal variations were effectively ig-
nored. However, most surgical training scenarios require more complex hyperelastic models to deal with the viscoelastic
properties of tissues. This type of material exhibits both viscous and elastic behaviors when subjected to external
force, requiring the implementation of time-dependant state variables. Herein, we propose a deep learning method for
predicting displacement fields of soft tissues with viscoelastic properties. The main contribution of this work is the
use of a physics-guided loss function for the optimization of the deep learning model parameters. The proposed deep
learning model is based on convolutional (CNN) and recurrent layers (LSTM) to predict spatiotemporal variations. It
is augmented with a mass conservation law in the lost function to prevent the generation of physically inconsistent
results. The deep learning model is trained on a set of FEM datasets that are generated from a commercially avail-
able state-of-the-art numerical neurosurgery simulator. The use of the physics-guided loss function in a deep learning
model has led to a better generalization in the prediction of deformations in unseen simulation cases. Moreover, the
proposed method achieves a better accuracy over the conventional CNN models, where improvements were observed in
unseen tissue from 8% to 30% depending on the magnitude of external forces. It is hoped that the present investigation
will help in filling the gap in applying deep learning in virtual reality simulators, hence improving their computational
performance (compared to FEM simulations) and ultimately their usefulness.
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1. Introduction

Neurosurgical training is typically obtained in oper-
ating rooms under the direct supervision of experienced
neurosurgeons, who are severely limited both in available
time and in the number of opportunities to practice. Con-
sequently, extraclinical surgical simulation is regularly in-
tegrated in training curriculum to provide for more devel-
opment opportunities. Evidences from the literature tend
to demonstrate that specific skills acquired during simu-
lation translate to the operating room [35]. Traditionally,
surgical simulation use live animal, bench, or cadaveric
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models [34]. Recently, virtual reality simulators have be-
come a promising alternative method to meet educational
requirements [1, 2, 3, 4, 35]. The use of simulation for sur-
gical training can have a measurable and significant clini-
cal impact by enabling new possibilities in surgical train-
ing. In a randomized control trial, [33] demonstrated that
using a simulator with metric-based artificial intelligence
(AI) tutoring is more effective than receiving remote tutor-
ing by a human instructor, or no tutoring while learning
simulated brain tumor resections. In this case, it is the
realistic simulation system with bimanual haptic feedback
that provides the monitoring data that is required by the
AI agent, therefore enabling this application. Additionally,
the availability of high precision data streams from surgical
simulation allows to automatically categorize the level of
expertise of the trainee using machine learning algorithms
[32]. Continuous expertise monitoring systems can further
assess surgical bimanual performance in real-time, which
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could be leveraged to provide predictive validation during
surgical residency training, allowing the early detection
of errors [30] and more efficient training. Virtual reality
simulators thus enable trainees to practice on a variety of
educational scenarios as well as to enable the definition of
new training metrics and applications (e.g. remote train-
ing).

1.1. Overview of virtual reality simulators

To provide realistic touch sensations through haptic
feedback devices, virtual reality simulators require a real-
time simulation of tissue deformation [5]. The behavior of
the tissue is critical during neurosurgery and its simula-
tion is challenging due to its complex nonlinear viscoelas-
tic nature. Finite Element Methods (FEM) are often used
numerical techniques for this type of simulation. How-
ever, the application of FEM in real-time simulation is
currently limited by hardware requirements. While sev-
eral types of procedure have been successfully simulated,
for example, Cranial Microneurosurgery [1], others, which
require a larger field of view or involve stiffer non-rigid
material, are much more challenging to implement. Ex-
amples of challenging scenarios include femoral nailing in
orthopedic [29] or endonasal neurosurgical procedures. If
a simulated scene is compute-bound, the designer needs
to fall-back on ad-hoc heuristic methods, which might de-
grade realism.

At the technical level, one of the main challenges in
FEM is a concurrent update of matrix entries, describing
the physical state, by several computational threads. This
is difficult to implement efficiently in parallel due to the
memory access arrangement [6]. The following body of
work has been proposed to overcome this limitation.

A first type of solutions are those based on model-
order reductions [7, 8, 9]. The conventional method for
constructing a model with comparatively fewer degrees of
freedom is the Proper Orthogonal Decomposition (POD).
POD extracts the main displacement patterns, known as
modes, that constitute simplified representations of the
tissue displacements. Then a linear combination of these
modes is used to approximate the final displacement field.
The use of POD for real-time simulation of tissue behavior
has been extensively studied [10, 11, 12] and with satisfy-
ing results in linear problems. However, this approach fails
in the simulation of highly nonlinear problems [13, 14, 15],
such as in neurosurgery simulations. This limitation was
circumvented by expressing the modes as a sum of sep-
arable nonlinear functions, referred to as Proper Gener-
alized Decomposition (PGD) [15]. However, due to the
implementation of boundary conditions as a new dimen-
sion into PGD, this technique is not well generalized and
needs to be modified and combined with kernel principal
component analysis [16].

A second alternative for accelerating FEM simulations
exploits machine learning approaches [17]. Based on FEM
simulation data, machine learning models learn a function
that maps an input, such as external forces, to an out-
put, such as nodal displacements, without any previous
knowledge of the problem. It has been postulated that if
a machine learning model is trained on a FEM dataset,
it can be subsequently used to predict the outcome of
FEM simulations in real time. Such use of machine learn-
ing for real-time simulation of tissue behavior has been
applied to simulate various organs, including breasts [18]
and livers [19, 20]. However in these works the involved
machine learning techniques, notably Support Vector Ma-
chine (SVM) and random forest, restrict their application
to small nodal displacements, as discussed by [21].

Recently, Convolutional Neural Networks (CNNs), a
class of machine learning methods, have been used to speed
up FEM simulations[21, 24, 31]. CNNs are shown to be
powerful in extracting complex patterns with the advan-
tage of parallelizing well on modern GPUs. Mendizabal et
al. [21] have used CNNs, based on a U-Net architecture
[22], for predicting nodal displacements of an elastic liver
in real-time. They have also compared the CNN model
with the POD method [23] and have shown that the ac-
curacy of a CNN is higher than that of a POD in a com-
parable inference time. Pfeifer et al. [24] have also used
fully convolutional neural networks for predicting nodal
displacements of three different liver models and have ob-
tained a reasonable accuracy within 20 ms of inference
time. Han el al. [31] used a CNN model in conjunction
with a classical solver to approach a multiphysics problem
in electrosurgery.

Despite the wide use of machine learning in computer
vision and natural language processing, applications to
problems in physics have often met limited success [25, 26].
This issue is partly due to the absence of physical laws in
machine learning algorithms. For instance, Jia et al. [27]
have highlighted this issue in the prediction of lake temper-
ature profiles. The calculation of the lake temperature is
rather similar to the calculation of material displacement
(our case) since both variables can be obtained from physi-
cal principles of momentum/energy conservation. Jia et al.
[27] showed that the predicted temperature profiles from
deep learning techniques are not consistent with respect to
the energy equation if the physical law of the problem is
absent in the loss function. For this reason, previous deep
learning techniques (CNNs) [21, 24] that have suggested
speeding up FEM simulations were restricted to simula-
tion cases of simple hyperelastic materials where the tem-
poral variations were effectively ignored. Combining phys-
ical laws with deep learning, referred to as physics-guided
deep learning, has received considerable attention in recent
years. Willard et al. [28] have provided a comprehensive
review on this subject.
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1.2. Contribution

There is a substantial difference in the effectiveness of
virtual reality simulators achieved using machine learn-
ing (data-driven) based systems, compared with FEM-
simulation systems utilizing only numerical methods. The
main benefit of the former consists of their usage in real-
time applications while providing similar results to FEM.
Therefore, we addressed this problem in the research re-
ported in this paper. This work proposes, for the first time
to the authors’ knowledge, a deep learning method for pre-
dicting displacement fields of soft tissues with viscoelastic
properties.

Overall, our contribution consists of the integration of a
mass-conservation law as a new domain-specific loss func-
tion into the proposed deep learning model, which makes
it possible to prevent the production of physically inconsis-
tent results. This is in contrast to the alternative existing
machine learning techniques, which are focused exclusively
on sample data, and they fail in the simulation of highly
nonlinear problems like viscoelastic tissue behavior. To
show the real application of the proposed method (as part
of another contribution), we have used the real data from a
virtual reality neurosurgery simulator, NeuroTouch, which
is a commercial product. The data is unique and challeng-
ing because of the hyperelasticity behavior of the tissue.
We have also demonstrated the faster computation of our
proposed method in comparison to the virtual reality sim-
ulator results, which are based on FEM technique. It is
hoped that the present investigation may also help in fill-
ing the gap in applying deep learning in FEM simulations.

1.3. Paper structure

The paper is organized as follows. In Section 2, we
present some information about commercial neurosurgi-
cal simulators, with particular attention given to the im-
plemented FEM technique in NeuroTech. The proposed
model is described in Section 3, and the results of the pro-
posed model are reported and discussed in Sections 4 and
5. The paper is concluded with Section 6.

2. Background information

Commercial neurosurgical simulators are based on tis-
sue deformation models derived from the fundamentals
of continuum mechanics. In such real-time applications,
a common strategy is to use simplified numerical FEM
models that are less costly to compute than more ana-
lytical alternatives. Since one of the motivations for this
work is to emulate the output of a FEM-based simula-
tor using a data-driven approach (hopefully at a greater

computational rate), the main driving equations are pre-
sented here. The selected FEM reference software, which
will be presented in Sec. 4, uses an explicit time-integration
scheme, and tissues are modeled as viscoelastic solids using
a quasilinear viscoelastic constitutive model1. The relax-
ation function is as follows:

G(t) = g0 +

2∑

k=1

gke
−t/τk (1)

where τk is a relaxation time and gk is a relaxation
modulus. The elastic part of tissue behavior is modeled as
hyperelastic solids of the generalized Neo-Hookean consti-
tutive model defined by the following strain energy density
function:

W = C1(I1 − 3− 2ln(j)) +
K

2
(j − 1)2, (2)

where C1 is the material constant determined from exper-
iments, I1 is the first invariant of the left Cauchy-Green
deformation tensor, K is the bulk modulus, and j is the
square root of the third invariant of the left Cauchy-Green
deformation tensor and a measure of the volumetric defor-
mation. The bulk modulus is defined as follows:

K =
2µ(1 + ν)

3(1− 2ν)
, (3)

where µ is the shear modulus, and ν is the Poisson ratio.

3. Method

In this section, data-driven approaches, based on deep
neural network architectures, are proposed for speeding up
the FEM simulation software. The deep learning models
are trained on a set of FEM datasets generated from a
commercial-grade simulator. The input to the model is an
external force on each node, a tensor of Nx×Ny ×Nz × 3,
where N is the number of nodes in the three directions
of x, y, z (as an example, a brain tumor grid mesh used
in this work for real-time simulation has size Nx = 17,
Ny = 17, and Nz = 8). The model output is a predicted
nodal displacement field with the same shape as the input
tensor.

1In mechanics of materials, a constitutive model is a represen-
tation of the constitutive laws which are the governing equations
describing the behavior of the material.
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3.1. Existing Neural Network models for tissue displace-

ment simulation

U-Net, a neural network architecture based on convo-
lutional layers, [22] has already been experimented suc-
cessfully for the simulation of simple hyperelastic mate-
rials [21]. However, this model is only able to extract
spatial characteristics of the nodal displacement field and
ignores the temporal deformation of the viscoelastic ma-
terial, which might reduce temporal smoothness and pre-
cision. In this work, we propose to alleviate these issues
by defining a model that includes an LSTM layer. In ad-
dition, terms that are specific to the mechanical nature of
the problem are also considered.

3.2. Proposed model

3.2.1. Network architecture

Our proposed deep neural network model combines
Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM) within the architecture shown in
Figure 1. LSTM, which is one of the Recurrent Neural
Network (RNN) models, is different from CNN models in
its consideration of time sequences. LSTM contains an
input gate, an output gate, and a forget gate. The inte-
gration of these gates makes LSTM a suitable model for
time-dependent problems. However, viscoelastic materi-
als with complex hyperelastic models are very nonlinear
to be modeled with a generic CNN-LSTM model. Herein,
the CNN-LSTM model with a Mean Squared Error (MSE)
loss function is referred to as ”generic CNN-LSTM” model.
This model is based on the CNN model, whose bottleneck
consists of an LSTM layer with 512 nodes. Due to the
power of the LSTM in feature extraction, we were able
to reduce the number of convolutional operations in the
model. The encoding/decoding path has a single convolu-
tional operation with 32 filters. The designed parameters
of the network architecture are shown in Table 1. It shows
the settings and the number of trainable parameters of the
entire layers, including convolutional, activation, pooling,
LSTM, and upsampling layers. The model optimizer is
Adam with a learning rate of 0.00001.

3.2.2. Mechanical displacement-specific loss function

To improve the modeling of viscoelastic materials, we
regularize the deep learning model by an auxiliary task to
ensure that the nodal displacement maps are constrained
by the constitutive laws. The conventional loss function
in regression problems is an MSE between the model pre-
dictions, Ûn,t, and the FEM simulations output, Un,t, for
every node and every time step.

To favorably constrain the learning process, a term
based on mass conservation law can be considered to ex-

tend the loss function. When the model satisfies the mass
conservation law, the volume of the tumor at each time
step, Vt should always remain constant and equal to the
initial volume of undeformed material, Vorigin. Thus, the
predicted nodal displacement fields that violate, ∆V =
Vt − Vorigin = 0, will be penalized. One usual way of
penalization is using Rectified Linear Units (ReLU) as ac-
tivation functions, but, in this study, it was observed that
this function suffers from the vanishing gradient problem.
Thus, to avoid the vanishing gradient inherent from ReLU,
a squared difference between Vt and Vorigin, i.e., L2 loss
function, has been considered for penalization. Finally,
the combined loss function, referred to as physics-guided,
is defined as follows:

Loss = LMSE + λLPhysics =
1

N

T,N∑

t,n=1

(Ûn,t − Un,t)
2+

λ(Vt − Vorigin)
2,

(4)
where λ is a hyper-parameter that regulates the balance
between LMSE and LPhysics, and it is equal to 0.1. It was
observed that decreasing λ to 0.01 will cause the effects of
LPhysics to be small, or increasing λ to 1 will deteriorate
the learning process. It should be noted that the current
FEM simulation has a coarse mesh with compressibility,
leading us to have some cases with physical error. To
circumvent this issue, the physics-guided term, LPhysics,
has been applied only to the cases whose volume change
is above a threshold value, which is 7% of the material
volume. In the rest of this paper, the CNN-LSTM model
with the physics-guided custom loss function is referred to
as our model.

It is worth mentioning that we also tried a different
physical law for implementation into the physical loss func-
tion, LPhysics. Based on Hooke’s law, the direction of
the displacement at each node should be consistent with
the direction of the external force at each node. In other
words, the cosine angle, cos θ, between the external force
vector of each node and the displacement vector of each
node should be always zero. Thus, we added a new term,
ReLU(1− cos θ), into the LPhysics. However, it was found
out this new term does not have a significant effect on
the learning process, and thus it has been ignored in the
proposed physics-guided loss function.

Once the deep learning model has been trained, it can
be deployed for real-time simulation of tissue behavior.
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Table 1: The proposed CNN-LSTM architecture. Note that the merging layer consists of a concatenation of the outputs of two predecessor
convolutional layers along the channel dimension.

Type #Filters Kernel size Stride UpSampling size # Parameters

Convolution 32 (3, 3, 3) (1, 1, 1) - 2624

Activation (ReLu) - - - - -

Pooling - (3, 3, 3) (3, 3, 3) - -

Bi-LSTM(512) - - - - 11538432

Activation (tanh) - - - - -

UpSampling - - - (4, 4, 3) -

Convolution 32 (3, 3, 3) (1, 1, 1) - 27680

Activation (ReLu) - - - - -

Merging* - - - - -

Convolution 3 (1, 1, 1) (1, 1, 1) - 195

Figure 1: CNN U-Net and CNN-LSTM deep learning architectures. The reference CNN U-Net network (see section 4.1.2) does not include
the purple LSTM box. The proposed CNN-LSTM general architecture is similar to that of the CNN network, except for the bottleneck
(center layers) which consists of an LSTM layer. The main contribution herein is the use of a physics-guided loss function for the optimization
of the model parameters.

4. Results

A virtual reality neurosurgery simulator with haptic
feedback2 [1, 2], (Figure 2) was used to illustrate the appli-
cability of the proposed method for fast viscoelastic tissue
displacement simulation. While capable of real-time simu-
lation, the simulation software embedded in the simulator
is computationally bounded, which prevents operation on
more portable hardware, or, alternatively, the use of big-
ger mechanical meshes. This surgical simulator has been
used for generating FEM simulation dataset of a brain tu-
mor. The tumor mesh has overall dimension Nx = 17,
Ny = 17, and Nz = 8, and consists of 1782 nodes and
1314 hexahedron cells, which leads to an input tensor size
of (17, 17, 8, 3). It is subjected to different states of two
contact forces. The bottom and the peripheral surfaces of
the material are subjected to a zero-displacement bound-
ary condition, while its top surfaces are left free. The sim-
ulator implements equations (1–3). In (1), τ1 and τ2 are
respectively 330s and 11s, and g1 and g2 are respectively

2NeuroTouch, from the National Research Council of Canada,
commercially available under the NeuroVR trademark from CAE
HealthCare.

0.12 and 0.8. In (2) and (3), C1, ν and µ, are respectively
0.0002 Mpa, 0.0004 Mpa, and 0.42.

4.1. Comparison with alternative methods

Herein, our proposed technique has been compared with
two different techniques for the prediction of tissue de-
formation from the external force: linear regression (as a
baseline model) and a previously introduced Convolutional
Neural Network (CNN) model. The models have been im-
plemented in TensorFlow, and the source code is available
at: https://github.com/Mkarami3/UNet_FEM.

4.1.1. Baseline model

The baseline model is a linear regression model. The
linear regression model predicts the nodal displacement
field as a linear combination of the input force. This model
is not expected to give appealing results but is included
to serve as a conceptual lower bound. For complex and
nonlinear problems, nonlinear approaches, such as deep
learning, are usually required.
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Figure 2: The virtual reality neurosurgery simulator, NeuroTouch,
at the National Research Council of Canada.

4.1.2. CNN U-Net model

The selected reference convolutional neural network is
based on a U-Net architecture and is represented in Fig-
ure 1. The encoding path consists of two convolutional
operations with 64 filters followed by a max-pooling opera-
tion which divides the input size into half. The bottleneck
consists of a stack of two convolutional operations with
128 filters. Its decoding is done by upsampling followed
by six convolutional operations with respectively 64, 64,
128, 64, and 3 filters. U-Net [22] has already been exper-
imented successfully for the simulation of simple hyper-
elastic materials [21]. However, this model is able to ex-
tract only spatial characteristics of the nodal displacement
field and ignores the temporal deformation of the viscoelas-
tic material. In contrast, with the proposed CNN-LSTM
model, these issues have been circumvented by implement-
ing the LSTM layer into our proposed model and by using
a physics-guided loss function.

4.2. Experiments on hyper-parameters optimization

In this section, we have performed multiple experi-
ments on different configurations of the proposed model
to find a combination of hyper-parameters that improves
the model performance. These hyper-parameters are the
number of neurons (NN ) and the number of time-steps
(Nt) in the LSTM layer. The size of the dataset is 1512,
which is splitted into a training set with a size of 1210
and a validation set with a size of 300. All the exper-
iments have been done on a personal computer with an
Intel Core i7 (3.40 GHz) and an Nvidia Geforce RTX 2080
with 11 GB of video RAM.

Figure 3: Variation of the average absolute error versus the normal-
ized depth for the different configurations of the CNN-LSTM model
(ours), see Table 2.

Table 2 presents the set of configurations of the LSTM
layer, and Figure 3 shows their corresponding performance
in the prediction of the nodal displacement field. It shows
that when the time-step (Nt) remains constant, increasing
the number of neurons (NN ) from 64 to 512, results in a
reduced displacement error at all ground truth displace-
ment levels. This behavior is observable in Figure 3 by
comparing the yellow line (configuration 1) with the green
line (configuration 4). However, increasing NN value fur-
ther, to 1024, does not have any effect on the reduction
of the displacement error since the error of configuration
4 (green line) and the error of configuration 5 (pink line)
collapse each other in Figure 3.

Briefly, this Figure shows that the proposed model with
512 neurons (NN ) and two time-steps (Nt) is optimal with
respect to accuracy and real-time application. Note that
while the model accuracy improves with the number of
time-steps, herein, Nt = 2 is selected to meet the require-
ment of a real-time processing application.

4.3. Assessment of the accuracy of the proposed model

To assess the performance of the proposed model, Bland-
Altman plot is shown in Figure 4. This analysis is per-
formed by averaging the predicted nodal displacement fields
over time sequences and then presenting the resulting graph
as a scatter plot, in which the vertical axis shows the
difference between the predicted nodal displacement and
the reference FEM simulation dataset and the horizontal
axis represents the mean of the reference FEM simulation
dataset. This technique has advantages over the correla-
tion coefficient and regression approaches in considering
the differences between the performance of the different
models.
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Table 2: Different sets of configurations of the LSTM layer in our model.

#Neurons (NN ) #Time-steps (Nt) #Trainable parameters

Configuration 1 64 2 1,219,235

Configuration 2 128 2 2,501,155

Configuration 3 256 2 5,261,603

Configuration 4 512 2 11,568,931

Configuration 5 1024 2 27,329,315

Configuration 6 512 3 11,568,931

Configuration 7 512 4 11,568,931

The Bland-Altman plot (Fig. 4) shows us that the lin-
ear regression model, as a baseline, is not able to predict
the nodal displacement field at all. This observation is ex-
pected as the linear regression is based on an assumption
that the nodal displacement field is a linear combination
of the input force, which is not a true assumption here due
to the viscoelasticity property of the material. While the
CNN deep learning models look capable of modeling tissue
deformation, our model has better accuracy than the CNN
model when the material is subjected to high strain, see
the differences between the two models when the mean of
deformation is higher than 0.6 mm. Moreover, the differ-
ences do not lie in the 96% confidence interval limit since
they are skewed and are not normally distributed.

Figure 5 shows the performance of the proposed deep
learning model for estimating the internal deformation of
an organ. The plot shows the error variations in mil-
limeters of the normalized depth, depth∗, of the mate-
rial. The depth is normalized with the height of the mate-
rial, and the displacement error is calculated by averaging
(Ûn,t − Un,t) in time sequences and the nodes which have
a similar depth. It shows that the CNN model has an av-
erage of 45% improvement over the regression model (as a
baseline). By implementing the LSTM layer into the pro-
posed model, this improvement can be increased further
to an average of 31% over the CNN model.

4.3.1. Contribution of the physics-guided term

The specific contribution of the proposed physics-guided
term in the loss function has been assessed by compar-
ing the proposed physics-guided CNN-LSTM with a CNN-
LSTM network optimized using the L2 loss function, and
with the CNN U-Net and linear baselines. The results
are presented in Figure 5. Even though nodal displace-
ment prediction errors of the generic CNN-LSTM model
and our proposed model are shown to be close. The main
difference between these two models lies in the general-
ization of deep learning. The proposed model generalizes
well on the unseen simulation cases through consideration
of the mass-conservation law. Such an unseen FEM simu-
lation case and its predicted displacement field are shown
in Figure 6. This property has been also demonstrated

by monitoring the amount of violation in volume preser-
vation, ∆V (mm3), and the external force magnitude over
100 sequences of the testing dataset, see Figure 7. We can
see that the generic CNN-LSTM, in comparison to the pro-
posed model, has a maximum violation in the sequence 83
for which the magnitude of the external force has a maxi-
mum deviation from its mean value. In other words, when
the input data (external force) of a testing case is more
deviated from what has been seen in the training dataset,
a higher error in the generalization of the generic CNN-
LSTM model will be observed. However, the physical loss
function provides properties favorable for a better general-
ization in our proposed model. For unseen simulation cases
(i.e., sequences 78 to 85 in Figure 7), this improvement is
in the range of 8% to 30%, depending on the magnitude
of the external force.

It should be noted that for a perfect model that satis-
fies the mass conservation law, ∆V (mm3) should always
remain constant and equal to zero. However, the current
FEM simulation has a small number of elements, result-
ing in a coarse mesh with some convergence error, and
the material is not perfectly incompressible. Thus, a small
violation in volume preservation can be observed in the
reference FEM cases, and our model gives a penalty only
to those cases for which the physical inconsistency is above
a threshold, i.e., ∆V > 12.1mm3.

4.4. Computational performance

In this section, we observe the computational behavior
of the proposed deep learning method and analyze if it
could be used to speed up FEM simulations in real time.
The proposed model was deployed on CPU and compared
its inference time with the latency time of FEM simulation
software of NeuroTouch. At the time of this study, it was
not possible to deploy CNN-LSTM on the Nvidia GPU
as the required LSTM component was not supported by
TensorRT 7.2.3. To have an estimation of the inference
time of the proposed model on GPU, we deployed the CNN
model on GPU.

Table 3 presents the inference time of the CNN and
the proposed model in comparison to the latency time of
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Figure 4: Plot of differences versus mean of the predicted deforma-
tions of the linear regression (baseline), the CNN, and the Physics-
Guided CNN-LSTM (ours) models from the reference FEM dataset.
The solid lines represent the mean of differences, and the dashed
lines represent the 96% confidence interval of the limits.

NeuroTouch. It can be seen that the CNN deep learning
model can be almost eleven times faster than NeuroTouch
when it is deployed on the GPU. Moreover, it was found
out that by pruning low magnitude weights in the con-
volutional layers of the CNN model, inference time can
be 1.3 times faster on CPU without losing accuracy. This
acceleration on CPU can be improved further by quantiza-
tion operation at the cost of the model accuracy. Figure 8
shows the effects of quantization on the accuracy of the
CNN model. While the effects of a float16 quantization
on the model accuracy are not significant, the model loses
its performance for int8 quantization. Deployment of the
CNN model on GPU suggests that we can reduce the infer-
ence time of the proposed model and make it faster than
NeuroTouch when it is deployed on GPU.

Currently, the proposed CNN-LSTM architecture can-
not be deployed on the GPU. However, when that func-
tionality becomes available, extrapolation based on CPU
times suggests that it could possibly run 3 times faster
than the explicit solver. Although the current implemen-
tation is slower than the NeuroTouch FEM software, there
might still be benefits in its deployment on CPU. The
implemented FEM engine in NeuroTouch uses an explicit
solver with a latency fixed at 0.010s, which is a design pa-
rameter. The engine achieves a fixed latency by perform-
ing a fixed number of integration steps, which depends on
the size of the mesh. Thus, for some configurations, par-
ticularly in the case of large deformations on larger mesh,
the explicit solver might not fully converge to the ideal
solution. Therefore, it is up to the designer to provide a
mesh that is sufficiently small to be solvable with a preci-
sion that is acceptable for the simulation most of the time.
However, this issue does not exist in the deployment of the

Figure 5: Variation of the average absolute error versus the normal-
ized depth for the baseline, the CNN, the generic CNN-LSTM, and
the physics-guided CNN-LSTM (ours) models.

Table 3: Comparison of inference time between the deep learning
models and the NeuroTouch FEM software. Note that the FEM
computation time is fixed at 0.010, but the convergence of the solver
is not guaranteed.

Model Latency on CPU (s) Latency on GPU (s)
CNN 0.022 0.0019

Proposed model 0.032 Not Supported
NeuroTouch-FEM Not Real-Time 0.01∗

deep learning models, and thus, herein, it is believed that
the advantages of our model architecture in deployment
outweigh the disadvantages of a slower latency time.

5. Discussion

Our experiments have demonstrated that physics-guided
deep learning is a viable solution for speeding up FEM
simulations. However, there are still limitations in this ap-
proach which can be important challenges for future work.

The first limitation is that the physics-guided loss func-
tion, LPhysics in Eq. 4, is only valid for FEM cases that do
not have a large amount of violation in volume preserva-
tion, ∆V = 0. If the reference FEM simulation cases have
a large convergence error (resulting from a coarse mesh)
or exhibit a high compressibility value, then ∆V would
have a large deviation from zero, which makes the present
LPhysics invalid.

The second limitation is that the capacity of the LSTM
model for capturing temporal dependencies is restricted
to viscoelastic materials that exhibit short stress relax-
ation. Viscoelastic materials have both viscous and elastic
properties when subjected to deformations. Herein, the
stress relaxation depends on the factor τ , and the higher
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(a)

(b)

(c)

Figure 6: Nodal displacement field of (a) the reference FEM simula-
tion, (b) as predicted by the generic CNN-LSTM model, and (c) as
predicted by the physics-guided CNN-LSTM model (ours). A sup-
plementary video related to these plots can be found in the online
version of the article.

(a)

(b)

Figure 7: Variations of (a) the external force magnitude, and (b) the
amount of violation in volume preservation,∆V (mm

3) over the 100
sequences of test cases in the reference FEM, generic and physics-
guided CNN-LSTM (ours) models.

its value, the longer it takes for the stress to relax. This
requires an LSTM layer with larger input time steps and a
greater number of neurons, which is not feasible for usage
in real-time processing applications.

Another limitation is that the present deep learning
network is not able to model FEM simulation cases that
include topology changes. Virtual cutting of deformable
objects, or cauterization, requires remeshing and move-
ment of nodes in the cutting layer. However, the present
network requires a mesh-like tensor with a fixed node order
to apply convolution operation.

9



Figure 8: Effects of quantization on the CNN model accuracy. Quan-
tization can speed up the model inference at the cost of losing accu-
racy.

6. Conclusions

In this paper, we propose a deep learning method for
the prediction of the displacement field of soft tissues with
viscoelastic properties. The main contribution of this work
is the use of a physics-guided loss function for optimiza-
tion of the deep learning model parameters. To deal with
the viscoelastic property of the material with a complex
hyperelastic model, the proposed deep learning model is
augmented with a constitutive law, referred to as physics-
guided deep learning (implemented as a new loss func-
tion) as well as an LSTM layer. These two features enable
the deep learning model to predict both spatial and tem-
poral variations of the nodal displacement field. It was
found that the proposed method achieves a better accu-
racy over the CNN model and has a better generaliza-
tion over the generic model with MSE loss function. In
terms of computational cost, it was shown that the pro-
posed method is currently capable of running in real-time
on the CPU (0.032s/cycle, 31Hz), but at a relatively low
rate. However, a potential GPU implementation, when
the required software components become available, is ex-
pected to bring a speedup of about 10x, which would make
this implementation 3x faster than the reference explicit
solver. Meanwhile, there are other benefits in deploying
CNN-LSTM on CPU as the reference NeuroTouch FEM
engine uses an explicit solver which can have convergence
problems that are not present in deep learning models.
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